基于不变性的方法,例如不变风险最小化(IRM),最近已成为有前途的域泛化方法(DG)。尽管有希望的理论,但由于真正不变特征和虚假不变特征的混合,这种方法在共同的分类任务中失败。为了解决这个问题,我们提出了一个基于条件熵最小化(CEM)原理的框架,以滤除带有具有更好概括能力的新算法的虚假不变特征。我们表明,我们提出的方法与众所周知的信息瓶颈(IB)框架密切相关,并证明在某些假设下,熵最小化可以准确恢复真正的不变特征。与最近在几个DG数据集中的最新原理替代方案相比,我们的方法提供了竞争性的分类精度。
translated by 谷歌翻译
在本文中,我们提出了一个新的领域概括(DG)框架,基于与看不见领域的风险的新上限。尤其是,我们的框架建议共同最大程度地减少可见域之间的协变量转移以及概念转移,从而在看不见的域上表现更好。虽然可以通过协变量和概念对准模块的任意组合来实施所提出的方法,但在这项工作中,我们使用良好的方法来分配一致性,即最大平均差异(MMD)和协方差比对(珊瑚)和使用,并使用不变的风险最小化(IRM)基于概念对齐的方法。我们的数值结果表明,所提出的方法在几个数据集上的域概括性要比最先进的方法执行或更好。
translated by 谷歌翻译
域泛化(DG)的主要挑战是克服多个训练域和看不见的测试域之间的潜在分布偏移。一类流行的DG算法旨在学习在训练域中具有不变因果关系的表示。但是,某些特征,称为\ emph {伪不变特征},可能是培训域中的不变性,但不是测试域,并且可以大大降低现有算法的性能。为了解决这个问题,我们提出了一种新颖的算法,称为不变信息瓶颈(IIB),该算法学习跨越训练和测试域的最小值的最小值。通过最大限度地减少表示和输入之间的相互信息,IIB可以减轻其对伪不变特征的依赖,这对于DG是期望的。为了验证IIB原则的有效性,我们对大型DG基准进行了广泛的实验。结果表明,在两个评估度量标准中,IIB的IIIb平均超过2.8 \%和3.8 \%的准确性。
translated by 谷歌翻译
最近的学习不变(因果)特征(OOD)概括最近引起了广泛的关注,在建议中不变风险最小化(IRM)(Arjovsky等,2019)是一个显着的解决方案。尽管其对线性回归的理论希望,但在线性分类问题中使用IRM的挑战仍然存在(Rosenfeld等,2020; Nagarajan等,2021)。沿着这一行,最近的一项研究(Arjovsky等人,2019年)迈出了第一步,并提出了基于信息瓶颈的不变风险最小化的学习原理(IB-imm)。在本文中,我们首先表明(Arjovsky等人,2019年)使用不变特征的支持重叠的关键假设对于保证OOD泛化是相当强大的,并且在没有这种假设的情况下仍然可以实现最佳解决方案。为了进一步回答IB-IRM是否足以在线性分类问题中学习不变特征的问题,我们表明IB-IRM在两种情况下仍将失败,无论是否不变功能捕获有关标签的所有信息。为了解决此类失败,我们提出了一个\ textit {基于反事实的信息瓶颈(CSIB)}学习算法,该算法可恢复不变的功能。即使从单个环境访问数据时,提出的算法也可以工作,并且在理论上对二进制和多类问题都具有一致的结果。我们对三个合成数据集进行了经验实验,以验证我们提出的方法的功效。
translated by 谷歌翻译
从多个域收集的现实世界数据可以在多个属性上具有多个不同的分布变化。但是,域概括(DG)算法的最新进展仅关注对单个属性的特定变化。我们介绍了具有多属性分布变化的数据集,并发现现有的DG算法无法概括。为了解释这一点,我们使用因果图来根据虚假属性与分类标签之间的关系来表征不同类型的变化。每个多属性因果图都需要对观察到的变量进行不同的约束,因此,基于单个固定独立性约束的任何算法都不能在所有变化中正常工作。我们提出了因果自适应约束最小化(CACM),这是一种用于识别正则化的正确独立性约束的新算法。完全合成,MNIST和小型NORB数据集的结果,涵盖了二进制和多价值属性和标签,确认我们的理论主张:正确的独立性约束导致未见域的最高准确性,而不正确的约束则无法做到这一点。我们的结果表明,建模数据生成过程中固有的因果关系的重要性:在许多情况下,如果没有此信息,就不可能知道正确的正规化约束。
translated by 谷歌翻译
域名(ood)概括是机器学习模型的重大挑战。已经提出了许多技术来克服这一挑战,通常专注于具有某些不变性属性的学习模型。在这项工作中,我们绘制了ood性能和模型校准之间的链接,争论跨多个域的校准可以被视为一个特殊的表达,导致更好的EOD泛化。具体而言,我们表明,在某些条件下,实现\ EMPH {多域校准}的模型可被证明无杂散相关性。这导致我们提出多域校准作为分类器的性能的可测量和可训练的代理。因此,我们介绍了易于申请的方法,并允许从业者通过训练或修改现有模型来改善多域校准,从而更好地在看不见的域上的性能。使用最近提出的野外的四个数据集以及彩色的MNIST数据集,我们证明了训练或调整模型,以便在多个域中校准它们导致在看不见的测试域中显着提高性能。我们认为,校准和革建化之间的这种有趣联系是从一个实际和理论的观点出发的。
translated by 谷歌翻译
通过推断培训数据中的潜在群体,最近的作品将不可用的注释不可用的情况引入不变性学习。通常,在大多数/少数族裔分裂下学习群体不变性在经验上被证明可以有效地改善许多数据集的分布泛化。但是,缺乏这些关于学习不变机制的理论保证。在本文中,我们揭示了在防止分类器依赖于培训集中的虚假相关性的情况下,现有小组不变学习方法的不足。具体来说,我们提出了两个关于判断这种充分性的标准。从理论和经验上讲,我们表明现有方法可以违反标准,因此未能推广出虚假的相关性转移。在此激励的情况下,我们设计了一种新的组不变学习方法,该方法构建具有统计独立性测试的组,并按组标签重新启动样本,以满足标准。关于合成数据和真实数据的实验表明,新方法在推广到虚假相关性转移方面显着优于现有的组不变学习方法。
translated by 谷歌翻译
尽管在各种应用中取得了显着成功,但众所周知,在呈现出分发数据时,深度学习可能会失败。为了解决这一挑战,我们考虑域泛化问题,其中使用从相关训练域系列绘制的数据进行训练,然后在不同和看不见的测试域中评估预测器。我们表明,在数据生成的自然模型和伴随的不变性条件下,域泛化问​​题等同于无限维约束的统计学习问题;此问题构成了我们的方法的基础,我们呼叫基于模型的域泛化。由于解决深度学习中受约束优化问题的固有挑战,我们利用非凸显二元性理论,在二元间隙上紧张的界限发展这种统计问题的不受约束放松。基于这种理论动机,我们提出了一种具有收敛保证的新型域泛化算法。在我们的实验中,我们在几个基准中报告了最多30个百分点的阶段概括基座,包括彩色,Camelyon17-Wilds,FMOW-Wilds和PAC。
translated by 谷歌翻译
学习域不变的表示已成为域适应/概括的最受欢迎的方法之一。在本文中,我们表明不变的表示可能不足以保证良好的概括,在考虑标签函数转移的情况下。受到这一点的启发,我们首先在经验风险上获得了新的概括上限,该概括风险明确考虑了标签函数移动。然后,我们提出了特定领域的风险最小化(DRM),该风险最小化(DRM)可以分别对不同域的分布移动进行建模,并为目标域选择最合适的域。对四个流行的域概括数据集(CMNIST,PACS,VLCS和域)进行了广泛的实验,证明了所提出的DRM对域泛化的有效性,具有以下优点:1)它的表现明显超过了竞争性盆地的表现; 2)与香草经验风险最小化(ERM)相比,所有训练领域都可以在所有训练领域中具有可比性或优越的精度; 3)在培训期间,它仍然非常简单和高效,4)与不变的学习方法是互补的。
translated by 谷歌翻译
域的概括(DG)通过利用来自多个相关分布或域的标记培训数据在看不见的测试分布上表现良好的预测因子。为了实现这一目标,标准公式优化了所有可能域的最差性能。但是,由于最糟糕的转变在实践中的转变极不可能,这通常会导致过度保守的解决方案。实际上,最近的一项研究发现,没有DG算法在平均性能方面优于经验风险最小化。在这项工作中,我们认为DG既不是最坏的问题,也不是一个普通的问题,而是概率问题。为此,我们为DG提出了一个概率框架,我们称之为可能的域概括,其中我们的关键想法是在训练期间看到的分配变化应在测试时告诉我们可能的变化。为了实现这一目标,我们将培训和测试域明确关联为从同一基础元分布中获取的,并提出了一个新的优化问题 - 分数风险最小化(QRM) - 要求该预测因子以很高的概率概括。然后,我们证明了QRM:(i)产生的预测因子,这些预测因素将具有所需概率的新域(给定足够多的域和样本); (ii)随着概括的所需概率接近一个,恢复因果预测因子。在我们的实验中,我们引入了针对DG的更全面的以分位数评估协议,并表明我们的算法在真实和合成数据上的最先进基准都优于最先进的基准。
translated by 谷歌翻译
最近,提出了不变的风险最小化(IRM)作为解决分布外(OOD)概括的有前途的解决方案。但是,目前尚不清楚何时应优先于广泛的经验风险最小化(ERM)框架。在这项工作中,我们从样本复杂性的角度分析了这两个框架,从而迈出了一个坚定的一步,以回答这个重要问题。我们发现,根据数据生成机制的类型,这两种方法可能具有有限样本和渐近行为。例如,在协变量偏移设置中,我们看到两种方法不仅达到了相同的渐近解决方案,而且具有相似的有限样本行为,没有明显的赢家。但是,对于其他分布变化,例如涉及混杂因素或反毒物变量的变化,两种方法到达不同的渐近解决方案,在这些方法中,保证IRM可以接近有限样品状态中所需的OOD溶液,而ERM甚至偶然地偏向于渐近。我们进一步研究了不同因素(环境的数量,模型的复杂性和IRM惩罚权重)如何影响IRM的样本复杂性与其距离OOD溶液的距离有关
translated by 谷歌翻译
现实世界的分类问题必须与域移位竞争,该域移动是部署模型的域之间的(潜在)不匹配以及收集训练数据的域。处理此类问题的方法必须指定域之间哪种结构与什么变化。一个自然的假设是,因果关系(结构)关系在所有领域都是不变的。然后,很容易学习仅取决于其因果父母的标签$ y $的预测指标。但是,许多现实世界中的问题是“反农产品”,因为$ y $是协变量$ x $的原因 - 在这种情况下,$ y $没有因果父母,而天真的因果不变性是没有用的。在本文中,我们研究了在特定的域转移概念下的表示形式学习,该概念既尊重因果不变性又自然处理“反毒物”结构。我们展示了如何利用域的共享因果结构来学习一个表示不变预测因子的表示,并且还允许在新域中快速适应。关键是将因果假设转化为学习原理,这些学习原理“不变”和“不稳定”特征。关于合成数据和现实世界数据的实验证明了所提出的学习算法的有效性。代码可在https://github.com/ybjiaang/actir上找到。
translated by 谷歌翻译
Learning models that gracefully handle distribution shifts is central to research on domain generalization, robust optimization, and fairness. A promising formulation is domain-invariant learning, which identifies the key issue of learning which features are domain-specific versus domaininvariant. An important assumption in this area is that the training examples are partitioned into "domains" or "environments". Our focus is on the more common setting where such partitions are not provided. We propose EIIL, a general framework for domain-invariant learning that incorporates Environment Inference to directly infer partitions that are maximally informative for downstream Invariant Learning. We show that EIIL outperforms invariant learning methods on the CMNIST benchmark without using environment labels, and significantly outperforms ERM on worst-group performance in the Waterbirds and CivilComments datasets. Finally, we establish connections between EIIL and algorithmic fairness, which enables EIIL to improve accuracy and calibration in a fair prediction problem.
translated by 谷歌翻译
域泛化算法使用来自多个域的培训数据来学习概括到未经识别域的模型。虽然最近提出的基准证明大多数现有算法不优于简单的基线,但建立的评估方法未能暴露各种因素的影响,这有助于性能不佳。在本文中,我们提出了一个域泛化算法的评估框架,其允许将误差分解成组件捕获概念的不同方面。通过基于域不变表示学习的思想的算法的普遍性的启发,我们扩展了评估框架,以捕获在实现不变性时捕获各种类型的失败。我们表明,泛化误差的最大贡献者跨越方法,数据集,正则化强度甚至培训长度各不相同。我们遵守与学习域不变表示的策略相关的两个问题。在彩色的MNIST上,大多数域泛化算法失败,因为它们仅在训练域上达到域名不变性。在Camelyon-17上,域名不变性会降低看不见域的表示质量。我们假设专注于在丰富的代表之上调整分类器可以是有希望的方向。
translated by 谷歌翻译
Distributional shift is one of the major obstacles when transferring machine learning prediction systems from the lab to the real world. To tackle this problem, we assume that variation across training domains is representative of the variation we might encounter at test time, but also that shifts at test time may be more extreme in magnitude. In particular, we show that reducing differences in risk across training domains can reduce a model's sensitivity to a wide range of extreme distributional shifts, including the challenging setting where the input contains both causal and anticausal elements. We motivate this approach, Risk Extrapolation (REx), as a form of robust optimization over a perturbation set of extrapolated domains (MM-REx), and propose a penalty on the variance of training risks (V-REx) as a simpler variant. We prove that variants of REx can recover the causal mechanisms of the targets, while also providing some robustness to changes in the input distribution ("covariate shift"). By tradingoff robustness to causally induced distributional shifts and covariate shift, REx is able to outperform alternative methods such as Invariant Risk Minimization in situations where these types of shift co-occur.
translated by 谷歌翻译
分销转移(DS)是一个常见的问题,可恶化学习机器的性能。为了克服这个问题,我们假设现实世界的分布是由基本分布组成的,这些分布在不同域之间保持不变。我们将其称为不变的基本分布(即)假设。因此,这种不变性使知识转移到看不见的域。为了利用该假设在域概括(DG)中,我们开发了一个由门域单位(GDU)组成的模块化神经网络层。每个GDU都学会了单个基本领域的嵌入,使我们能够在训练过程中编码域相似性。在推断期间,GDU在观察和每个相应的基本分布之间进行了计算相似性,然后将其用于形成学习机的加权集合。由于我们的层是经过反向传播的训练,因此可以轻松地集成到现有的深度学习框架中。我们对Digits5,ECG,CamelyOn17,IwildCam和FMOW的评估显示出对训练的目标域的性能有显着改善,而无需从目标域访问数据。这一发现支持了即现实世界数据分布中的假设。
translated by 谷歌翻译
尽管最近在欧几里得数据(例如图像)上使用不变性原理(OOD)概括(例如图像),但有关图数据的研究仍然受到限制。与图像不同,图形的复杂性质给采用不变性原理带来了独特的挑战。特别是,图表上的分布变化可以以多种形式出现,例如属性和结构,因此很难识别不变性。此外,在欧几里得数据上通常需要的域或环境分区通常需要的图形可能非常昂贵。为了弥合这一差距,我们提出了一个新的框架,以捕获图形的不变性,以在各种分配变化下进行保证的OOD概括。具体而言,我们表征了具有因果模型的图形上的潜在分布变化,得出结论,当模型仅关注包含有关标签原因最多信息的子图时,可以实现图形上的OOD概括。因此,我们提出了一个信息理论目标,以提取最大地保留不变的阶级信息的所需子图。用这些子图学习不受分配变化的影响。对合成和现实世界数据集进行的广泛实验,包括在AI ADED药物发现中充满挑战的环境,验证了我们方法的上等OOD概括能力。
translated by 谷歌翻译
机器学习系统经常在培训和测试之间遇到分发转变。在本文中,我们介绍了一个简单的变分目标,其OptiCa正好成为所有表现形式的集合,在那种情况下,保证风险最小化者对保留贝叶斯预测因子的任何分配换档,例如协变量。我们的目标有两个组成部分。首先,表示必须保持对任务的判别,即,一些预测指标必须能够同时最小化来源和目标风险。其次,代表性的边际支持需要跨源头和目标相同。我们通过设计自我监督的学习方法来实现这一实用,只使用未标记的数据和增强来培训强大的陈述。我们的目标在域底实现最先进的结果,并对最近的方法(如剪辑)的稳健性提供洞察力。
translated by 谷歌翻译
Machine learning models rely on various assumptions to attain high accuracy. One of the preliminary assumptions of these models is the independent and identical distribution, which suggests that the train and test data are sampled from the same distribution. However, this assumption seldom holds in the real world due to distribution shifts. As a result models that rely on this assumption exhibit poor generalization capabilities. Over the recent years, dedicated efforts have been made to improve the generalization capabilities of these models collectively known as -- \textit{domain generalization methods}. The primary idea behind these methods is to identify stable features or mechanisms that remain invariant across the different distributions. Many generalization approaches employ causal theories to describe invariance since causality and invariance are inextricably intertwined. However, current surveys deal with the causality-aware domain generalization methods on a very high-level. Furthermore, we argue that it is possible to categorize the methods based on how causality is leveraged in that method and in which part of the model pipeline is it used. To this end, we categorize the causal domain generalization methods into three categories, namely, (i) Invariance via Causal Data Augmentation methods which are applied during the data pre-processing stage, (ii) Invariance via Causal representation learning methods that are utilized during the representation learning stage, and (iii) Invariance via Transferring Causal mechanisms methods that are applied during the classification stage of the pipeline. Furthermore, this survey includes in-depth insights into benchmark datasets and code repositories for domain generalization methods. We conclude the survey with insights and discussions on future directions.
translated by 谷歌翻译
分销(OOD)泛化问题的目标是培训推广所有环境的预测因子。此字段中的流行方法使用这样的假设,即这种预测器应为\ Texit {不变预测器},该{不变预测仪}捕获跨环境仍然不变的机制。虽然这些方法在各种案例研究中进行了实验成功,但仍然有很多关于这一假设的理论验证的空间。本文介绍了一系列不变预测因素所必需的一系列理论条件,以实现ood最优性。我们的理论不仅适用于非线性案例,还概括了\ CiteT {Rojas2018Invariant}中使用的必要条件。我们还从我们的理论中得出渐变对齐算法,并展示了\ Citet {Aubinlinear}提出的三个\ Texit {不变性单元测试}中的两种竞争力。
translated by 谷歌翻译