对比学习在自然和医学图像上表现出令人印象深刻的结果,而无需注释数据。然而,医学图像的特殊性是可以利用学习陈述的元数据(如年龄或性别)的可用性。在这里,我们表明最近提出的对比y-Aware缺陷,即集成了多维元数据,渐近优化了两个属性:条件对准和全局均匀性。类似地到[王,2020],条件对准意味着类似的样本应该具有类似的特征,而是有条件地对象数据。相反,全局均匀性意味着(归一化)特征应独立于元数据的单位超球均匀分布。在这里,我们建议定义条件均匀性,依赖于元数据,该数据仅排斥具有不同元数据的样本。我们表明,在CIFAR-100和脑MRI数据集中,有条件对准和均匀性的直接优化改善了线性评估的表示。
translated by 谷歌翻译
我们提出了一个使用脑MRI的阿尔茨海默氏病(AD)检测的新型框架。该框架从称为脑感知替代品(BAR)的数据增强方法开始,该方法利用标准的脑部分割来替代与随机挑选的MRI锚固MRI中的医学相关的3D脑区域,以创建合成样品。地面真相“硬”标签也根据替换比的不同,以创建“软”标签。与其他基于混合的方法(例如CutMix)相比,BAR可产生各种各样的逼真的合成MRI,具有较高局部变异性。在酒吧之上,我们建议使用具有软标签能力的监督对比损失,旨在了解表示形式的相对相似性,这些相似性反映了使用我们的软标签的合成MRI的混合方式。这样,我们就不会充分耗尽硬标签的熵能力,因为我们只使用它们来通过bar创建软标签和合成MRI。我们表明,使用用于创建合成样品的硬质标签的跨凝结损失,可以通过跨凝性损失进行预训练的模型。我们在二进制广告检测任务中验证了框架的性能,以与从划伤的监督培训和最先进的自我监督培训以及微调方法进行验证。然后,我们通过将BAR的个人性能与另一个基于混合的方法CutMix进行了整合,从而评估了BAR的个人性能。我们表明,我们的框架在AD检测任务的精确度和回忆中都产生了卓越的结果。
translated by 谷歌翻译
医学图像分割或计算voxelwise语义面具是一个基本又具有挑战性的任务,用于计算体素级语义面具。为了提高编码器 - 解码器神经网络在大型临床队列中执行这项任务的能力,对比学习提供了稳定模型初始化和增强编码器而无需标签的机会。然而,多个目标对象(具有不同的语义含义)可能存在于单个图像中,这使得适应传统的对比学习方法从普遍的“图像级分类”到“像素级分段”中的问题。在本文中,我们提出了一种简单的语义感知对比学习方法,利用注意掩模来推进多对象语义分割。简而言之,我们将不同的语义对象嵌入不同的群集而不是传统的图像级嵌入。我们在与内部数据和Miccai挑战2015 BTCV数据集中的多器官医学图像分段任务中评估我们提出的方法。与目前的最先进的培训策略相比,我们拟议的管道分别产生了两种医学图像分割队列的骰子评分的大幅提高5.53%和6.09%(P值<0.01)。通过Pascal VOC 2012 DataSet进一步评估了所提出的方法的性能,并在MiOU(P值<0.01)上实现了2.75%的大幅提高。
translated by 谷歌翻译
从积极和未标记的(PU)数据中学习是一种设置,学习者只能访问正面和未标记的样本,而没有关于负面示例的信息。这种PU环境在各种任务中非常重要,例如医学诊断,社交网络分析,金融市场分析和知识基础完成,这些任务也往往本质上是不平衡的,即大多数示例实际上是负面的。但是,大多数现有的PU学习方法仅考虑人工平衡的数据集,目前尚不清楚它们在不平衡和长尾数据分布的现实情况下的表现如何。本文提议通过强大而有效的自我监督预处理来应对这一挑战。但是,培训传统的自我监督学习方法使用高度不平衡的PU分布需要更好的重新重新制定。在本文中,我们提出\ textit {Impulses},这是\ usewanced {im}平衡\下划线{p} osive \ unesive \ usepline {u} nlabeLed \ underline {l}的统一表示的学习框架{p}。 \下划线{s}削弱了debiase预训练。 Impulses使用大规模无监督学习的通用组合以及对比度损失和额外重新持续的PU损失的一般组合。我们在多个数据集上进行了不同的实验,以表明Impuls能够使先前最新的错误率减半,即使与先前给出的真实先验的方法相比。此外,即使在无关的数据集上进行了预处理,我们的方法也表现出对事先错误指定和卓越性能的鲁棒性。我们预计,这种稳健性和效率将使从业者更容易在其他感兴趣的PU数据集上获得出色的结果。源代码可在\ url {https://github.com/jschweisthal/impulses}中获得
translated by 谷歌翻译
高注释成本是将现代深度学习架构应用于临床相关的医疗用例的大量瓶颈,这使得新颖算法的需要从未标记的数据中学习。在这项工作中,我们提出了一种自我监督的方法,可以从未标记的医学图像和遗传数据的大型数据集中学习。我们的方法使用对比损耗对准特征空间中的图像和几种遗传模式。我们设计我们的方法,以将每个人的多种模式集成在同一模型端到端,即使当可用的方式因个人而异)也是如此。我们的程序优于所有在所有评估的下游基准任务上表达最先进的自我监督方法。我们还适应基于梯度的可解释性算法,以更好地了解图像和遗传模式之间学习的跨模型关联。最后,我们对我们模型学到的特征进行了基因组关联研究,揭示了图像与遗传数据之间的有趣关系。
translated by 谷歌翻译
Well-annotated medical datasets enable deep neural networks (DNNs) to gain strong power in extracting lesion-related features. Building such large and well-designed medical datasets is costly due to the need for high-level expertise. Model pre-training based on ImageNet is a common practice to gain better generalization when the data amount is limited. However, it suffers from the domain gap between natural and medical images. In this work, we pre-train DNNs on ultrasound (US) domains instead of ImageNet to reduce the domain gap in medical US applications. To learn US image representations based on unlabeled US videos, we propose a novel meta-learning-based contrastive learning method, namely Meta Ultrasound Contrastive Learning (Meta-USCL). To tackle the key challenge of obtaining semantically consistent sample pairs for contrastive learning, we present a positive pair generation module along with an automatic sample weighting module based on meta-learning. Experimental results on multiple computer-aided diagnosis (CAD) problems, including pneumonia detection, breast cancer classification, and breast tumor segmentation, show that the proposed self-supervised method reaches state-of-the-art (SOTA). The codes are available at https://github.com/Schuture/Meta-USCL.
translated by 谷歌翻译
自我监督的对比表示学习提供了从未标记的医学数据集中学习有意义的视觉表示的优势,以进行转移学习。但是,将当前的对比度学习方法应用于医疗数据而不考虑其特定区域的解剖学特征可能会导致视觉表示,这些视觉表示在外观和语义上是不一致的。在本文中,我们建议通过解剖学对比度学习(AWCL)改善医学图像的视觉表示,该学习结合了解剖学信息,以以对比度学习方式增强正/阴性对采样。为自动化的胎儿超声成像任务展示了所提出的方法,从而使从解剖学上相似的相同或不同的超声扫描实现了正对,这些扫描在解剖学上相似,可以将其拉在一起,从而改善了表示的学习。我们从经验上研究了与粗粒和细粒度的粒度纳入解剖信息的效果,以进行对比学习,并发现使用细粒度的解剖学信息的学习能够保留阶层内差异比其对应物更有效。我们还分析了解剖比对我们的AWCL框架的影响,发现使用更独特但解剖学上的样品构成阳性对的影响会带来更好的质量表示。大规模胎儿超声数据集的实验表明,我们的方法对学习表征有效,可以很好地转移到三个临床下游任务,并且与受监督的Imagenet和当前的先进对比度学习方法相比,取得了优越的性能。特别是,在跨域分割任务上,AWCL的表现优于Imagenet监督方法,高于13.8%,基于最先进的对比度方法的方法为7.1%。
translated by 谷歌翻译
高质量注释的医学成像数据集的稀缺性是一个主要问题,它与医学成像分析领域的机器学习应用相撞并阻碍了其进步。自我监督学习是一种最近的培训范式,可以使学习强大的表示无需人类注释,这可以被视为有效的解决方案,以解决带注释的医学数据的稀缺性。本文回顾了自我监督学习方法的最新研究方向,用于图像数据,并将其专注于其在医学成像分析领域的应用。本文涵盖了从计算机视野领域的最新自我监督学习方法,因为它们适用于医学成像分析,并将其归类为预测性,生成性和对比性方法。此外,该文章涵盖了40个在医学成像分析中自学学习领域的最新研究论文,旨在阐明该领域的最新创新。最后,本文以该领域的未来研究指示结束。
translated by 谷歌翻译
监管基于深度学习的方法,产生医学图像分割的准确结果。但是,它们需要大量标记的数据集,并获得它们是一种艰苦的任务,需要临床专业知识。基于半/自我监督的学习方法通​​过利用未标记的数据以及有限的注释数据来解决此限制。最近的自我监督学习方法使用对比损失来从未标记的图像中学习良好的全球层面表示,并在像想象网那样的流行自然图像数据集上实现高性能。在诸如分段的像素级预测任务中,对于学习良好的本地级别表示以及全局表示来说至关重要,以实现更好的准确性。然而,现有的局部对比损失的方法的影响仍然是学习良好本地表现的限制,因为类似于随机增强和空间接近定义了类似和不同的局部区域;由于半/自我监督设置缺乏大规模专家注释,而不是基于当地地区的语义标签。在本文中,我们提出了局部对比损失,以便通过利用从未标记的图像的未标记图像的伪标签获得的语义标签信息来学习用于分割的良好像素级别特征。特别地,我们定义了建议的损失,以鼓励具有相同伪标签/标签的像素的类似表示,同时与数据集中的不同伪标签/标签的像素的表示。我们通过联合优化标记和未标记的集合和仅限于标记集的分割损失,通过联合优化拟议的对比损失来进行基于伪标签的自培训和培训网络。我们在三个公共心脏和前列腺数据集上进行了评估,并获得高分割性能。
translated by 谷歌翻译
从一个非常少数标记的样品中学习新颖的课程引起了机器学习区域的越来越高。最近关于基于元学习或转移学习的基于范例的研究表明,良好特征空间的获取信息可以是在几次拍摄任务上实现有利性能的有效解决方案。在本文中,我们提出了一种简单但有效的范式,该范式解耦了学习特征表示和分类器的任务,并且只能通过典型的传送学习培训策略从基类嵌入体系结构的特征。为了在每个类别内保持跨基地和新类别和辨别能力的泛化能力,我们提出了一种双路径特征学习方案,其有效地结合了与对比特征结构的结构相似性。以这种方式,内部级别对齐和级别的均匀性可以很好地平衡,并且导致性能提高。三个流行基准测试的实验表明,当与简单的基于原型的分类器结合起来时,我们的方法仍然可以在电感或转换推理设置中的标准和广义的几次射击问题达到有希望的结果。
translated by 谷歌翻译
Computer vision and machine learning are playing an increasingly important role in computer-assisted diagnosis; however, the application of deep learning to medical imaging has challenges in data availability and data imbalance, and it is especially important that models for medical imaging are built to be trustworthy. Therefore, we propose TRUDLMIA, a trustworthy deep learning framework for medical image analysis, which adopts a modular design, leverages self-supervised pre-training, and utilizes a novel surrogate loss function. Experimental evaluations indicate that models generated from the framework are both trustworthy and high-performing. It is anticipated that the framework will support researchers and clinicians in advancing the use of deep learning for dealing with public health crises including COVID-19.
translated by 谷歌翻译
转移学习已成为减轻医疗分类任务中缺乏标记数据的标准做法。虽然FineEning使用受监督的想象佩尔预押的下游任务预磨损的功能是简单的,并且在许多作品中进行了广泛的调查,但对自我监督预测的有用性很少有研究。在本文中,我们评估了通过从三种自我监督技术(SIMCLR,SWAV和DINO)对所选医疗分类任务的三种自我监控技术(SIMCLRR,SWAV和DINO)初始化的模型的性能来评估想象成自我监督的可转换性。所选择的任务涵盖Sentinel腋窝淋巴结图像中的肿瘤检测,眼底图像中的糖尿病视网膜病变分类以及胸部X射线图像中的多种病理条件分类。我们展示了自我监督的佩戴模型产生比其监督对应物更丰富的嵌入式,这鉴于线性评估和FineTuning均有益处下游任务。例如,考虑到在织物上的数据的线性评估,我们在糖尿病视网膜病变分类任务中看到高达14.79%的提高,肿瘤分类任务中的5.4%,肺炎中的7.03%AUC检测和9.4%的AUC在胸部X射线的病理条件下检测。此外,我们将动态视觉元嵌入(DVME)引入端到端的转移学习方法,融合来自多种型号的佩尔净化的嵌入物。我们表明,与使用单个掠过的模型方法相比,DVME获得的集体表示导致所选任务的性能的显着改进,并且可以推广到预磨料模型的任何组合。
translated by 谷歌翻译
为医学图像评估构建准确和强大的人工智能系统,不仅需要高级深度学习模型的研究和设计,还需要创建大型和策划的注释训练示例。然而,构造这种数据集通常非常昂贵 - 由于注释任务的复杂性和解释医学图像所需的高度专业知识(例如,专家放射科医师)。为了对此限制来说,我们提出了一种基于对比学习和在线特征聚类的丰富图像特征自我监督学习方法。为此目的,我们利用各种方式的大超过100,000,000个医学图像的大型训练数据集,包括放射线照相,计算机断层扫描(CT),磁共振(MR)成像和超声检查。我们建议使用这些功能来指导在各种下游任务的监督和混合自我监督/监督制度的模型培训。我们突出了这种策略对射线照相,CT和MR:1的挑战性图像评估问题的许多优点,与最先进的(例如,检测3-7%的AUC升压为3-7%胸部射线照相扫描的异常和脑CT的出血检测); 2)与使用无预先训练(例如,83%,在培训MR扫描MR扫描中的脑转移的模型时,在训练期间训练期间的模型收敛在训练期间的培训期高达85%。 3)对各种图像增强的鲁棒性增加,例如在场中看到的数据变化的强度变化,旋转或缩放反射。
translated by 谷歌翻译
A prominent technique for self-supervised representation learning has been to contrast semantically similar and dissimilar pairs of samples. Without access to labels, dissimilar (negative) points are typically taken to be randomly sampled datapoints, implicitly accepting that these points may, in reality, actually have the same label. Perhaps unsurprisingly, we observe that sampling negative examples from truly different labels improves performance, in a synthetic setting where labels are available. Motivated by this observation, we develop a debiased contrastive objective that corrects for the sampling of same-label datapoints, even without knowledge of the true labels. Empirically, the proposed objective consistently outperforms the state-of-the-art for representation learning in vision, language, and reinforcement learning benchmarks. Theoretically, we establish generalization bounds for the downstream classification task.
translated by 谷歌翻译
Deep neural networks have been successfully adopted to diverse domains including pathology classification based on medical images. However, large-scale and high-quality data to train powerful neural networks are rare in the medical domain as the labeling must be done by qualified experts. Researchers recently tackled this problem with some success by taking advantage of models pre-trained on large-scale general domain data. Specifically, researchers took contrastive image-text encoders (e.g., CLIP) and fine-tuned it with chest X-ray images and paired reports to perform zero-shot pathology classification, thus completely removing the need for pathology-annotated images to train a classification model. Existing studies, however, fine-tuned the pre-trained model with the same contrastive learning objective, and failed to exploit the multi-labeled nature of medical image-report pairs. In this paper, we propose a new fine-tuning strategy based on sentence sampling and positive-pair loss relaxation for improving the downstream zero-shot pathology classification performance, which can be applied to any pre-trained contrastive image-text encoders. Our method consistently showed dramatically improved zero-shot pathology classification performance on four different chest X-ray datasets and 3 different pre-trained models (5.77% average AUROC increase). In particular, fine-tuning CLIP with our method showed much comparable or marginally outperformed to board-certified radiologists (0.619 vs 0.625 in F1 score and 0.530 vs 0.544 in MCC) in zero-shot classification of five prominent diseases from the CheXpert dataset.
translated by 谷歌翻译
Many datasets are biased, namely they contain easy-to-learn features that are highly correlated with the target class only in the dataset but not in the true underlying distribution of the data. For this reason, learning unbiased models from biased data has become a very relevant research topic in the last years. In this work, we tackle the problem of learning representations that are robust to biases. We first present a margin-based theoretical framework that allows us to clarify why recent contrastive losses (InfoNCE, SupCon, etc.) can fail when dealing with biased data. Based on that, we derive a novel formulation of the supervised contrastive loss (epsilon-SupInfoNCE), providing more accurate control of the minimal distance between positive and negative samples. Furthermore, thanks to our theoretical framework, we also propose FairKL, a new debiasing regularization loss, that works well even with extremely biased data. We validate the proposed losses on standard vision datasets including CIFAR10, CIFAR100, and ImageNet, and we assess the debiasing capability of FairKL with epsilon-SupInfoNCE, reaching state-of-the-art performance on a number of biased datasets, including real instances of biases in the wild.
translated by 谷歌翻译
对比性自我监督学习方法学会将图像(例如图像)映射到无需标签的情况下将图像映射到非参数表示空间中。尽管非常成功,但当前方法在训练阶段需要大量数据。在目标训练集规模限制的情况下,已知概括是差的。在大型源数据集和目标样本上进行微调进行预处理,容易在几杆方向上过度拟合,在几个弹药方面,只有少量的目标样本可用。在此激励的情况下,我们提出了一种用于自我监督的对比度学习的域适应方法,称为少数最大的学习方法,以解决对目标分布的适应问题,这些问题在几乎没有射击学习下。为了量化表示质量,我们在包括ImageNet,Visda和FastMRI在内的一系列源和目标数据集上评估了很少的最大最大速度,在这些数据集和FastMRI上,很少有最大最大的最大值始终优于其他方法。
translated by 谷歌翻译
对比度学习(CL)方法有效地学习数据表示,而无需标记监督,在该方法中,编码器通过单VS-MONY SOFTMAX跨透镜损失将每个正样本在多个负样本上对比。通过利用大量未标记的图像数据,在Imagenet上预先训练时,最近的CL方法获得了有希望的结果,这是一个具有均衡图像类的曲制曲线曲线集。但是,当对野外图像进行预训练时,它们往往会产生较差的性能。在本文中,为了进一步提高CL的性能并增强其对未经保育数据集的鲁棒性,我们提出了一种双重的CL策略,该策略将其内部查询的正(负)样本对比,然后才能决定多么强烈地拉动(推)。我们通过对比度吸引力和对比度排斥(CACR)意识到这一策略,这使得查询不仅发挥了更大的力量来吸引更遥远的正样本,而且可以驱除更接近的负面样本。理论分析表明,CACR通过考虑正/阴性样品的分布之间的差异来概括CL的行为,而正/负样品的分布通常与查询独立进行采样,并且它们的真实条件分布给出了查询。我们证明了这种独特的阳性吸引力和阴性排斥机制,这有助于消除在数据集的策划较低时尤其有益于数据及其潜在表示的统一先验分布的需求。对许多标准视觉任务进行的大规模大规模实验表明,CACR不仅在表示学习中的基准数据集上始终优于现有的CL方法,而且在对不平衡图像数据集进行预训练时,还表现出更好的鲁棒性。
translated by 谷歌翻译
Contrastive representation learning has been outstandingly successful in practice. In this work, we identify two key properties related to the contrastive loss: (1) alignment (closeness) of features from positive pairs, and (2) uniformity of the induced distribution of the (normalized) features on the hypersphere. We prove that, asymptotically, the contrastive loss optimizes these properties, and analyze their positive effects on downstream tasks. Empirically, we introduce an optimizable metric to quantify each property. Extensive experiments on standard vision and language datasets confirm the strong agreement between both metrics and downstream task performance. Directly optimizing for these two metrics leads to representations with comparable or better performance at downstream tasks than contrastive learning. Project
translated by 谷歌翻译
有监督的深度学习算法具有自动化筛查,监视和分级的医学图像的巨大潜力。但是,培训表现模型通常需要大量的标记数据,这在医疗领域几乎无法获得。自我监督的对比框架通过首先从未标记的图像中学习来放松这种依赖性。在这项工作中,我们表明使用两种对比方法进行了预处理,即SIMCLR和BYOL,就与年龄相关的黄斑变性(AMD)的临床评估有关深度学习的实用性。在实验中,使用两个大型临床数据集,其中包含7,912名患者的170,427个光学相干断层扫描(OCT)图像,我们评估了从AMD阶段和类型分类到功能性终点的七个下游任务,从七个下游任务进行预处理,从在标签较少的七个任务中,六个任务中有六个显着增加。但是,标准的对比框架具有两个已知的弱点,这些弱点不利于医疗领域的预处理。用于创建正面对比对的几种图像转换不适用于灰度医学扫描。此外,医学图像通常描绘了相同的解剖区域和疾病的严重程度,从而导致许多误导性负面对。为了解决这些问题,我们开发了一种新颖的元数据增强方法,该方法利用了丰富的固有可用患者信息集。为此,我们采用了患者身份,眼睛位置(即左或右)和时间序列数据的记录,以指示典型的不可知的对比关系。通过利用这种经常被忽视的信息,我们元数据增强的对比预处理可带来进一步的好处,并且在下游七个任务中有五个任务中的五个中的五分之一。
translated by 谷歌翻译