Object detection, one of the three main tasks of computer vision, has been used in various applications. The main process is to use deep neural networks to extract the features of an image and then use the features to identify the class and location of an object. Therefore, the main direction to improve the accuracy of object detection tasks is to improve the neural network to extract features better. In this paper, I propose a convolutional module with a transformer[1], which aims to improve the recognition accuracy of the model by fusing the detailed features extracted by CNN[2] with the global features extracted by a transformer and significantly reduce the computational effort of the transformer module by deflating the feature mAP. The main execution steps are convolutional downsampling to reduce the feature map size, then self-attention calculation and upsampling, and finally concatenation with the initial input. In the experimental part, after splicing the block to the end of YOLOv5n[3] and training 300 epochs on the coco dataset, the mAP improved by 1.7% compared with the previous YOLOv5n, and the mAP curve did not show any saturation phenomenon, so there is still potential for improvement. After 100 rounds of training on the Pascal VOC dataset, the accuracy of the results reached 81%, which is 4.6 better than the faster RCNN[4] using resnet101[5] as the backbone, but the number of parameters is less than one-twentieth of it.
translated by 谷歌翻译
尽管Yolov2方法在对象检测时非常快,但由于其骨干网络的性能较低和多尺度区域特征的缺乏,其检测准确性受到限制。因此,在本文中提出了一种基于Yolov2的Yolo(DC)Yolo(DC-SPP-YOLO)方法的密集连接(DC)和空间金字塔池(SPP)方法。具体而言,在Yolov2的骨干网络中采用了卷积层的密集连接,以增强特征提取并减轻消失的梯度问题。此外,引入了改进的空间金字塔池以池并加入多尺度区域特征,以便网络可以更全面地学习对象功能。 DC-SPP-YOLO模型是根据由MSE(均方误差)损耗和跨透镜损失组成的新损失函数建立和训练的。实验结果表明,DC-SPP-Yolo的地图(平均平均精度)高于Pascal VOC数据集和UA-Detrac数据集上的Yolov2。提出了DC-SPP-Yolo方法的有效性。
translated by 谷歌翻译
In recent years, object detection has achieved a very large performance improvement, but the detection result of small objects is still not very satisfactory. This work proposes a strategy based on feature fusion and dilated convolution that employs dilated convolution to broaden the receptive field of feature maps at various scales in order to address this issue. On the one hand, it can improve the detection accuracy of larger objects. On the other hand, it provides more contextual information for small objects, which is beneficial to improving the detection accuracy of small objects. The shallow semantic information of small objects is obtained by filtering out the noise in the feature map, and the feature information of more small objects is preserved by using multi-scale fusion feature module and attention mechanism. The fusion of these shallow feature information and deep semantic information can generate richer feature maps for small object detection. Experiments show that this method can have higher accuracy than the traditional YOLOv3 network in the detection of small objects and occluded objects. In addition, we achieve 32.8\% Mean Average Precision on the detection of small objects on MS COCO2017 test set. For 640*640 input, this method has 88.76\% mAP on the PASCAL VOC2012 dataset.
translated by 谷歌翻译
Due to object detection's close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Traditional object detection methods are built on handcrafted features and shallow trainable architectures. Their performance easily stagnates by constructing complex ensembles which combine multiple low-level image features with high-level context from object detectors and scene classifiers. With the rapid development in deep learning, more powerful tools, which are able to learn semantic, high-level, deeper features, are introduced to address the problems existing in traditional architectures. These models behave differently in network architecture, training strategy and optimization function, etc. In this paper, we provide a review on deep learning based object detection frameworks. Our review begins with a brief introduction on the history of deep learning and its representative tool, namely Convolutional Neural Network (CNN). Then we focus on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further. As distinct specific detection tasks exhibit different characteristics, we also briefly survey several specific tasks, including salient object detection, face detection and pedestrian detection. Experimental analyses are also provided to compare various methods and draw some meaningful conclusions. Finally, several promising directions and tasks are provided to serve as guidelines for future work in both object detection and relevant neural network based learning systems.
translated by 谷歌翻译
Visual perception plays an important role in autonomous driving. One of the primary tasks is object detection and identification. Since the vision sensor is rich in color and texture information, it can quickly and accurately identify various road information. The commonly used technique is based on extracting and calculating various features of the image. The recent development of deep learning-based method has better reliability and processing speed and has a greater advantage in recognizing complex elements. For depth estimation, vision sensor is also used for ranging due to their small size and low cost. Monocular camera uses image data from a single viewpoint as input to estimate object depth. In contrast, stereo vision is based on parallax and matching feature points of different views, and the application of deep learning also further improves the accuracy. In addition, Simultaneous Location and Mapping (SLAM) can establish a model of the road environment, thus helping the vehicle perceive the surrounding environment and complete the tasks. In this paper, we introduce and compare various methods of object detection and identification, then explain the development of depth estimation and compare various methods based on monocular, stereo, and RDBG sensors, next review and compare various methods of SLAM, and finally summarize the current problems and present the future development trends of vision technologies.
translated by 谷歌翻译
Existing deep convolutional neural networks (CNNs) require a fixed-size (e.g., 224×224) input image. This requirement is "artificial" and may reduce the recognition accuracy for the images or sub-images of an arbitrary size/scale. In this work, we equip the networks with another pooling strategy, "spatial pyramid pooling", to eliminate the above requirement. The new network structure, called SPP-net, can generate a fixed-length representation regardless of image size/scale. Pyramid pooling is also robust to object deformations. With these advantages, SPP-net should in general improve all CNN-based image classification methods. On the ImageNet 2012 dataset, we demonstrate that SPP-net boosts the accuracy of a variety of CNN architectures despite their different designs. On the Pascal VOC 2007 and Caltech101 datasets, SPP-net achieves state-of-theart classification results using a single full-image representation and no fine-tuning.The power of SPP-net is also significant in object detection. Using SPP-net, we compute the feature maps from the entire image only once, and then pool features in arbitrary regions (sub-images) to generate fixed-length representations for training the detectors. This method avoids repeatedly computing the convolutional features. In processing test images, our method is 24-102× faster than the R-CNN method, while achieving better or comparable accuracy on Pascal VOC 2007.In ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2014, our methods rank #2 in object detection and #3 in image classification among all 38 teams. This manuscript also introduces the improvement made for this competition.
translated by 谷歌翻译
对象检测是计算机视觉中的重要下游任务。对于车载边缘计算平台,很难实现实时检测要求。而且,由大量可分开的卷积层建立的轻巧模型无法达到足够的精度。我们引入了一种新的轻质卷积技术GSCONV,以减轻模型,但保持准确性。 GSCONV在模型的准确性和速度之间取得了极好的权衡。而且,我们提供了一个设计范式,即纤细的颈部,以实现探测器的更高计算成本效益。在二十多组比较实验中,我们的方法的有效性得到了强有力的证明。特别是,通过我们的方法改善的检测器获得了最先进的结果(例如,与原件相比,在Tesla T4 GPU上以〜100fps的速度为70.9%MAP0.5。代码可从https://github.com/alanli1997/slim-neck-by-gsconv获得。
translated by 谷歌翻译
Dunhuang murals are a collection of Chinese style and national style, forming a self-contained Chinese-style Buddhist art. It has very high historical and cultural value and research significance. Among them, the lines of Dunhuang murals are highly general and expressive. It reflects the character's distinctive character and complex inner emotions. Therefore, the outline drawing of murals is of great significance to the research of Dunhuang Culture. The contour generation of Dunhuang murals belongs to image edge detection, which is an important branch of computer vision, aims to extract salient contour information in images. Although convolution-based deep learning networks have achieved good results in image edge extraction by exploring the contextual and semantic features of images. However, with the enlargement of the receptive field, some local detail information is lost. This makes it impossible for them to generate reasonable outline drawings of murals. In this paper, we propose a novel edge detector based on self-attention combined with convolution to generate line drawings of Dunhuang murals. Compared with existing edge detection methods, firstly, a new residual self-attention and convolution mixed module (Ramix) is proposed to fuse local and global features in feature maps. Secondly, a novel densely connected backbone extraction network is designed to efficiently propagate rich edge feature information from shallow layers into deep layers. Compared with existing methods, it is shown on different public datasets that our method is able to generate sharper and richer edge maps. In addition, testing on the Dunhuang mural dataset shows that our method can achieve very competitive performance.
translated by 谷歌翻译
现在,诸如无人机之类的无人机,从捕获和目标检测的各种目的中,从Ariel Imagery等捕获和目标检测的各种目的很大使用。轻松进入这些小的Ariel车辆到公众可能导致严重的安全威胁。例如,可以通过使用无人机在公共公共场合中混合的间谍来监视关键位置。在手中研究提出了一种改进和高效的深度学习自治系统,可以以极大的精度检测和跟踪非常小的无人机。建议的系统由自定义深度学习模型Tiny Yolov3组成,其中一个非常快速的物体检测模型的口味之一,您只能构建并用于检测一次(YOLO)。物体检测算法将有效地检测无人机。与以前的Yolo版本相比,拟议的架构表现出显着更好的性能。在资源使用和时间复杂性方面观察到改进。使用召回和精度分别为93%和91%的测量来测量性能。
translated by 谷歌翻译
遵循机器视觉系统在线自动化质量控制和检查过程的成功之后,这项工作中为两个不同的特定应用提供了一种对象识别解决方案,即,在医院准备在医院进行消毒的手术工具箱中检测质量控制项目,以及检测血管船体中的缺陷,以防止潜在的结构故障。该解决方案有两个阶段。首先,基于单镜头多伯克斯检测器(SSD)的特征金字塔体系结构用于改善检测性能,并采用基于地面真实的统计分析来选择一系列默认框的参数。其次,利用轻量级神经网络使用回归方法来实现定向检测结果。该方法的第一阶段能够检测两种情况下考虑的小目标。在第二阶段,尽管很简单,但在保持较高的运行效率的同时,检测细长目标是有效的。
translated by 谷歌翻译
近年来,基于深度学习的面部检测算法取得了长足的进步。这些算法通常可以分为两类,即诸如更快的R-CNN和像Yolo这样的单阶段检测器之类的两个阶段检测器。由于准确性和速度之间的平衡更好,因此在许多应用中广泛使用了一阶段探测器。在本文中,我们提出了一个基于一阶段检测器Yolov5的实时面部检测器,名为Yolo-Facev2。我们设计一个称为RFE的接收场增强模块,以增强小面的接受场,并使用NWD损失来弥补IOU对微小物体的位置偏差的敏感性。对于面部阻塞,我们提出了一个名为Seam的注意模块,并引入了排斥损失以解决它。此外,我们使用重量函数幻灯片来解决简单和硬样品之间的不平衡,并使用有效的接收场的信息来设计锚。宽面数据集上的实验结果表明,在所有简单,中和硬子集中都可以找到我们的面部检测器及其变体的表现及其变体。源代码https://github.com/krasjet-yu/yolo-facev2
translated by 谷歌翻译
标记数据通常昂贵且耗时,特别是对于诸如对象检测和实例分割之类的任务,这需要对图像的密集标签进行密集的标签。虽然几张拍摄对象检测是关于培训小说中的模型(看不见的)对象类具有很少的数据,但它仍然需要在许多标记的基础(见)类的课程上进行训练。另一方面,自我监督的方法旨在从未标记数据学习的学习表示,该数据转移到诸如物体检测的下游任务。结合几次射击和自我监督的物体检测是一个有前途的研究方向。在本调查中,我们审查并表征了几次射击和自我监督对象检测的最新方法。然后,我们给我们的主要外卖,并讨论未来的研究方向。https://gabrielhuang.github.io/fsod-survey/的项目页面
translated by 谷歌翻译
在本文中,我们提出了简单的关注机制,我们称之为箱子。它可以实现网格特征之间的空间交互,从感兴趣的框中采样,并提高变压器的学习能力,以获得几个视觉任务。具体而言,我们呈现拳击手,短暂的框变压器,通过从输入特征映射上的参考窗口预测其转换来参加一组框。通过考虑其网格结构,拳击手通过考虑其网格结构来计算这些框的注意力。值得注意的是,Boxer-2D自然有关于其注意模块内容信息的框信息的原因,使其适用于端到端实例检测和分段任务。通过在盒注意模块中旋转的旋转的不变性,Boxer-3D能够从用于3D端到端对象检测的鸟瞰图平面产生识别信息。我们的实验表明,拟议的拳击手-2D在Coco检测中实现了更好的结果,并且在Coco实例分割上具有良好的和高度优化的掩模R-CNN可比性。 Boxer-3D已经为Waymo开放的车辆类别提供了令人信服的性能,而无需任何特定的类优化。代码将被释放。
translated by 谷歌翻译
We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location. At prediction time, the network generates scores for the presence of each object category in each default box and produces adjustments to the box to better match the object shape. Additionally, the network combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes. SSD is simple relative to methods that require object proposals because it completely eliminates proposal generation and subsequent pixel or feature resampling stages and encapsulates all computation in a single network. This makes SSD easy to train and straightforward to integrate into systems that require a detection component. Experimental results on the PASCAL VOC, COCO, and ILSVRC datasets confirm that SSD has competitive accuracy to methods that utilize an additional object proposal step and is much faster, while providing a unified framework for both training and inference. For 300 × 300 input, SSD achieves 74.3% mAP 1 on VOC2007 test at 59 FPS on a Nvidia Titan X and for 512 × 512 input, SSD achieves 76.9% mAP, outperforming a comparable state-of-the-art Faster R-CNN model. Compared to other single stage methods, SSD has much better accuracy even with a smaller input image size. Code is available at: https://github.com/weiliu89/caffe/tree/ssd .
translated by 谷歌翻译
Passive millimeter-wave (PMMW) is a significant potential technique for human security screening. Several popular object detection networks have been used for PMMW images. However, restricted by the low resolution and high noise of PMMW images, PMMW hidden object detection based on deep learning usually suffers from low accuracy and low classification confidence. To tackle the above problems, this paper proposes a Task-Aligned Detection Transformer network, named PMMW-DETR. In the first stage, a Denoising Coarse-to-Fine Transformer (DCFT) backbone is designed to extract long- and short-range features in the different scales. In the second stage, we propose the Query Selection module to introduce learned spatial features into the network as prior knowledge, which enhances the semantic perception capability of the network. In the third stage, aiming to improve the classification performance, we perform a Task-Aligned Dual-Head block to decouple the classification and regression tasks. Based on our self-developed PMMW security screening dataset, experimental results including comparison with State-Of-The-Art (SOTA) methods and ablation study demonstrate that the PMMW-DETR obtains higher accuracy and classification confidence than previous works, and exhibits robustness to the PMMW images of low quality.
translated by 谷歌翻译
State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features-using the recently popular terminology of neural networks with "attention" mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3], our detection system has a frame rate of 5fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.
translated by 谷歌翻译
面部检测是为了在图像中搜索面部的所有可能区域,并且如果有任何情况,则定位面部。包括面部识别,面部表情识别,面部跟踪和头部姿势估计的许多应用假设面部的位置和尺寸在图像中是已知的。近几十年来,研究人员从Viola-Jones脸上检测器创造了许多典型和有效的面部探测器到当前的基于CNN的CNN。然而,随着图像和视频的巨大增加,具有面部刻度的变化,外观,表达,遮挡和姿势,传统的面部探测器被挑战来检测野外面孔的各种“脸部。深度学习技术的出现带来了非凡的检测突破,以及计算的价格相当大的价格。本文介绍了代表性的深度学习的方法,并在准确性和效率方面提出了深度和全面的分析。我们进一步比较并讨论了流行的并挑战数据集及其评估指标。进行了几种成功的基于深度学习的面部探测器的全面比较,以使用两个度量来揭示其效率:拖鞋和延迟。本文可以指导为不同应用选择合适的面部探测器,也可以开发更高效和准确的探测器。
translated by 谷歌翻译
最近,Vision Transformer通过推动各种视觉任务的最新技术取得了巨大的成功。视觉变压器中最具挑战性的问题之一是,图像令牌的较大序列长度会导致高计算成本(二次复杂性)。解决此问题的一个流行解决方案是使用单个合并操作来减少序列长度。本文考虑如何改善现有的视觉变压器,在这种变压器中,单个合并操作提取的合并功能似乎不太强大。为此,我们注意到,由于其在上下文抽象中的强大能力,金字塔池在各种视觉任务中已被证明是有效的。但是,在骨干网络设计中尚未探索金字塔池。为了弥合这一差距,我们建议在视觉变压器中将金字塔池汇总到多头自我注意力(MHSA)中,同时降低了序列长度并捕获强大的上下文特征。我们插入了基于池的MHSA,我们构建了一个通用视觉变压器主链,称为金字塔池变压器(P2T)。广泛的实验表明,与先前的基于CNN-和基于变压器的网络相比,当将P2T用作骨干网络时,它在各种视觉任务中显示出很大的优势。该代码将在https://github.com/yuhuan-wu/p2t上发布。
translated by 谷歌翻译
本文提出了RESTV2,这是一种更简单,更快,更强的多尺度视觉变压器,用于视觉识别。 RESTV2简化了RESTV1中的EMSA结构(即消除了多头相互作用零件),并采用了upplame操作来重建由下采样操作引起的丢失的中等和高频信息。此外,我们探索了不同的技术,以更好地将RESTV2骨架应用于下游任务。我们发现,尽管将EMSAV2和窗户注意力结合起来可以大大减少理论矩阵乘数拖台,但它可能会大大降低计算密度,从而导致较低的实际速度。我们全面验证RESTV2在Imagenet分类,可可检测和ADE20K语义分割方面。实验结果表明,所提出的RESTV2可以大幅度优于最近最新的骨干,这表明RESTV2作为固体骨架的潜力。代码和模型将在\ url {https://github.com/wofmanaf/rest}公开可用
translated by 谷歌翻译
本文解决了由多头自我注意力(MHSA)中高计算/空间复杂性引起的视觉变压器的低效率缺陷。为此,我们提出了层次MHSA(H-MHSA),其表示以层次方式计算。具体而言,我们首先将输入图像分为通常完成的补丁,每个补丁都被视为令牌。然后,拟议的H-MHSA学习本地贴片中的令牌关系,作为局部关系建模。然后,将小贴片合并为较大的贴片,H-MHSA对少量合并令牌的全局依赖性建模。最后,汇总了本地和全球专注的功能,以获得具有强大表示能力的功能。由于我们仅在每个步骤中计算有限数量的令牌的注意力,因此大大减少了计算负载。因此,H-MHSA可以在不牺牲细粒度信息的情况下有效地模拟令牌之间的全局关系。使用H-MHSA模块合并,我们建立了一个基于层次的变压器网络的家族,即HAT-NET。为了证明在场景理解中HAT-NET的优越性,我们就基本视觉任务进行了广泛的实验,包括图像分类,语义分割,对象检测和实例细分。因此,HAT-NET为视觉变压器提供了新的视角。可以在https://github.com/yun-liu/hat-net上获得代码和预估计的模型。
translated by 谷歌翻译