Passive millimeter-wave (PMMW) is a significant potential technique for human security screening. Several popular object detection networks have been used for PMMW images. However, restricted by the low resolution and high noise of PMMW images, PMMW hidden object detection based on deep learning usually suffers from low accuracy and low classification confidence. To tackle the above problems, this paper proposes a Task-Aligned Detection Transformer network, named PMMW-DETR. In the first stage, a Denoising Coarse-to-Fine Transformer (DCFT) backbone is designed to extract long- and short-range features in the different scales. In the second stage, we propose the Query Selection module to introduce learned spatial features into the network as prior knowledge, which enhances the semantic perception capability of the network. In the third stage, aiming to improve the classification performance, we perform a Task-Aligned Dual-Head block to decouple the classification and regression tasks. Based on our self-developed PMMW security screening dataset, experimental results including comparison with State-Of-The-Art (SOTA) methods and ablation study demonstrate that the PMMW-DETR obtains higher accuracy and classification confidence than previous works, and exhibits robustness to the PMMW images of low quality.
translated by 谷歌翻译
我们将Dino(\ textbf {d} etr与\ textbf {i} mpred de \ textbf {n} oising hand \ textbf {o} r boxes),一种最先进的端到端对象检测器。 % 在本文中。 Dino通过使用一种对比度方法来降级训练,一种用于锚定初始化的混合查询选择方法以及对盒子预测的两次方案,通过使用对比的方式来改善性能和效率的模型。 Dino在$ 12 $时代获得$ 49.4 $ ap,$ 12.3 $ ap in Coco $ 24 $时期,带有Resnet-50骨干和多尺度功能,可显着改善$ \ textbf {+6.0} $ \ textbf {ap}和ap {ap}和ap}和$ \ textbf {+2.7} $ \ textbf {ap}与以前的最佳detr样模型相比,分别是dn-detr。 Dino在模型大小和数据大小方面都很好地缩放。没有铃铛和哨子,在对objects365数据集进行了swinl骨架的预训练后,Dino在两个Coco \ texttt {val2017}($ \ textbf {63.2} $ \ textbf {ap ap})和\ testtt { -dev}(\ textbf {$ \ textbf {63.3} $ ap})。与排行榜上的其他模型相比,Dino大大降低了其模型大小和预训练数据大小,同时实现了更好的结果。我们的代码将在\ url {https://github.com/ideacvr/dino}提供。
translated by 谷歌翻译
在本文中,我们提出了简单的关注机制,我们称之为箱子。它可以实现网格特征之间的空间交互,从感兴趣的框中采样,并提高变压器的学习能力,以获得几个视觉任务。具体而言,我们呈现拳击手,短暂的框变压器,通过从输入特征映射上的参考窗口预测其转换来参加一组框。通过考虑其网格结构,拳击手通过考虑其网格结构来计算这些框的注意力。值得注意的是,Boxer-2D自然有关于其注意模块内容信息的框信息的原因,使其适用于端到端实例检测和分段任务。通过在盒注意模块中旋转的旋转的不变性,Boxer-3D能够从用于3D端到端对象检测的鸟瞰图平面产生识别信息。我们的实验表明,拟议的拳击手-2D在Coco检测中实现了更好的结果,并且在Coco实例分割上具有良好的和高度优化的掩模R-CNN可比性。 Boxer-3D已经为Waymo开放的车辆类别提供了令人信服的性能,而无需任何特定的类优化。代码将被释放。
translated by 谷歌翻译
DETR has been recently proposed to eliminate the need for many hand-designed components in object detection while demonstrating good performance. However, it suffers from slow convergence and limited feature spatial resolution, due to the limitation of Transformer attention modules in processing image feature maps. To mitigate these issues, we proposed Deformable DETR, whose attention modules only attend to a small set of key sampling points around a reference. Deformable DETR can achieve better performance than DETR (especially on small objects) with 10× less training epochs. Extensive experiments on the COCO benchmark demonstrate the effectiveness of our approach. Code is released at https:// github.com/fundamentalvision/Deformable-DETR.
translated by 谷歌翻译
视觉变压器(VIT)正在改变对象检测方法的景观。 VIT的自然使用方法是用基于变压器的骨干替换基于CNN的骨干,该主链很简单有效,其价格为推理带来了可观的计算负担。更微妙的用法是DEDR家族,它消除了对物体检测中许多手工设计的组件的需求,但引入了一个解码器,要求超长时间进行融合。结果,基于变压器的对象检测不能在大规模应用中占上风。为了克服这些问题,我们提出了一种新型的无解码器基于完全变压器(DFFT)对象检测器,这是第一次在训练和推理阶段达到高效率。我们通过居中两个切入点来简化反对检测到仅编码单级锚点的密集预测问题:1)消除训练感知的解码器,并利用两个强的编码器来保留单层特征映射预测的准确性; 2)探索具有有限的计算资源的检测任务的低级语义特征。特别是,我们设计了一种新型的轻巧的面向检测的变压器主链,该主链有效地捕获了基于良好的消融研究的丰富语义的低级特征。 MS Coco基准测试的广泛实验表明,DFFT_SMALL的表现优于2.5%AP,计算成本降低28%,$ 10 \ $ 10 \乘以$ 10 \乘以$较少的培训时期。与尖端的基于锚的探测器视网膜相比,DFFT_SMALL获得了超过5.5%的AP增益,同时降低了70%的计算成本。
translated by 谷歌翻译
已经提出了各种模型来执行对象检测。但是,大多数人都需要许多手工设计的组件,例如锚和非最大抑制(NMS),以表现出良好的性能。为了减轻这些问题,建议了基于变压器的DETR及其变体可变形DETR。这些解决了为对象检测模型设计头部时的许多复杂问题。但是,当将基于变压器的模型视为其他模型的对象检测中的最新方法时,仍然存在对性能的疑问,这取决于锚定和NMS,揭示了更好的结果。此外,目前尚不清楚是否可以仅与注意模块结合使用端到端管道,因为Detr适应的变压器方法使用卷积神经网络(CNN)作为骨干身体。在这项研究中,我们建议将几个注意力模块与我们的新任务特异性分裂变压器(TSST)相结合是一种有力的方法,可以在没有传统手工设计的组件的情况下生成可可结果上最先进的性能。通过将通用注意模块分为两个分开的目标注意模块,该方法允许设计简单的对象检测模型。对可可基准的广泛实验证明了我们方法的有效性。代码可在https://github.com/navervision/tsst上获得
translated by 谷歌翻译
变压器最近在各种视觉任务上表现出卓越的性能。大型有时甚至全球,接收领域赋予变换器模型,并通过其CNN对应物具有更高的表示功率。然而,简单地扩大接收领域也产生了几个问题。一方面,使用致密的注意,例如,在VIT中,导致过度的记忆和计算成本,并且特征可以受到超出兴趣区域的无关紧要的影响。另一方面,PVT或SWIN变压器采用的稀疏注意是数据不可知论,可能会限制模拟长距离关系的能力。为了缓解这些问题,我们提出了一种新型可变形的自我关注模块,其中以数据相关的方式选择密钥和值对中的密钥和值对的位置。这种灵活的方案使自我关注模块能够专注于相关区域并捕获更多的信息性功能。在此基础上,我们呈现可变形的关注变压器,一般骨干模型,具有可变形关注的图像分类和密集预测任务。广泛的实验表明,我们的模型在综合基准上实现了一致的改善结果。代码可在https://github.com/leaplabthu/dat上获得。
translated by 谷歌翻译
在本文中,我们对检测变压器(DETR)感兴趣,这是一种基于变压器编码器编码器架构的端到端对象检测方法,而无需手工制作的后处理,例如NMS。受到有条件的Detr的启发,这是一种具有快速训练收敛性的改进的DETR,对内部解码器层提出了盒子查询(最初称为空间查询),我们将对象查询重新将对象查询重新布置为盒子查询的格式,该格式是参考参考嵌入的组成点和框相对于参考点的转换。该重新制定表明在更快地使用R-CNN中广泛研究的DETR中的对象查询与锚固框之间的联系。此外,我们从图像内容中学习了盒子查询,从而进一步提高了通过快速训练收敛的有条件DETR的检测质量。此外,我们采用轴向自我注意的想法来节省内存成本并加速编码器。所得的检测器(称为条件DETR V2)取得比条件DETR更好的结果,可节省内存成本并更有效地运行。例如,对于DC $ 5 $ -Resnet- $ 50 $骨干,我们的方法在可可$ Val $ set上获得了$ 44.8 $ ap,$ 16.4 $ fps和有条件的detr相比,它运行了$ 1.6 \ tims $ $ $ $ $,节省$ 74 $ \ \ \ \ \ \ \ \ \ \ \ \ \ $ 74美元总体内存成本的百分比,并提高$ 1.0 $ ap得分。
translated by 谷歌翻译
变压器是一种基于关注的编码器解码器架构,彻底改变了自然语言处理领域。灵感来自这一重大成就,最近在将变形式架构调整到计算机视觉(CV)领域的一些开创性作品,这已经证明了他们对各种简历任务的有效性。依靠竞争力的建模能力,与现代卷积神经网络相比在本文中,我们已经为三百不同的视觉变压器进行了全面的审查,用于三个基本的CV任务(分类,检测和分割),提出了根据其动机,结构和使用情况组织这些方法的分类。 。由于培训设置和面向任务的差异,我们还在不同的配置上进行了评估了这些方法,以便于易于和直观的比较而不是各种基准。此外,我们已经揭示了一系列必不可少的,但可能使变压器能够从众多架构中脱颖而出,例如松弛的高级语义嵌入,以弥合视觉和顺序变压器之间的差距。最后,提出了三个未来的未来研究方向进行进一步投资。
translated by 谷歌翻译
人对象交互(HOI)检测作为对象检测任务的下游需要本地化人和对象,并从图像中提取人类和对象之间的语义关系。最近,由于其高效率,一步方法已成为这项任务的新趋势。然而,这些方法侧重于检测可能的交互点或过滤人对象对,忽略空间尺度处的不同物体的位置和大小的可变性。为了解决这个问题,我们提出了一种基于变压器的方法,Qahoi(用于人对象交互检测的查询锚点),它利用了多尺度架构来提取来自不同空间尺度的特征,并使用基于查询的锚来预测全部Hoi实例的元素。我们进一步调查了强大的骨干,显着提高了QAHOI的准确性,QAHOI与基于变压器的骨干优于最近的最近最先进的方法,通过HICO-DEC基准。源代码以$ \ href {https://github.com/cjw2021/qhoii} {\ text {this https url}} $。
translated by 谷歌翻译
Recently, the dominant DETR-based approaches apply central-concept spatial prior to accelerate Transformer detector convergency. These methods gradually refine the reference points to the center of target objects and imbue object queries with the updated central reference information for spatially conditional attention. However, centralizing reference points may severely deteriorate queries' saliency and confuse detectors due to the indiscriminative spatial prior. To bridge the gap between the reference points of salient queries and Transformer detectors, we propose SAlient Point-based DETR (SAP-DETR) by treating object detection as a transformation from salient points to instance objects. In SAP-DETR, we explicitly initialize a query-specific reference point for each object query, gradually aggregate them into an instance object, and then predict the distance from each side of the bounding box to these points. By rapidly attending to query-specific reference region and other conditional extreme regions from the image features, SAP-DETR can effectively bridge the gap between the salient point and the query-based Transformer detector with a significant convergency speed. Our extensive experiments have demonstrated that SAP-DETR achieves 1.4 times convergency speed with competitive performance. Under the standard training scheme, SAP-DETR stably promotes the SOTA approaches by 1.0 AP. Based on ResNet-DC-101, SAP-DETR achieves 46.9 AP.
translated by 谷歌翻译
变形金刚正在改变计算机视觉的景观,特别是对于识别任务。检测变压器是对象检测的第一个完全结束的学习系统,而视觉变压器是用于图像分类的第一个完全变压器的架构。在本文中,我们集成了视觉和检测变压器(Vidt)以构建有效和高效的物体探测器。 VIDT引入了重新配置的注意模块,将最近的Swin变压器扩展为独立对象检测器,然后是计算高效的变压器解码器,该解码器利用多尺度特征和辅助技术来提高检测性能,而无需多大增加计算负载。 Microsoft Coco基准数据集上的广泛评估结果表明,VIDT在现有的基于变压器的对象检测器中获得了最佳的AP和延迟折衷,并且由于大型型号的高可扩展性而实现了49.2AP。我们将在https://github.com/naver-ai/vidt发布代码和培训的型号
translated by 谷歌翻译
We present in this paper a novel denoising training method to speedup DETR (DEtection TRansformer) training and offer a deepened understanding of the slow convergence issue of DETR-like methods. We show that the slow convergence results from the instability of bipartite graph matching which causes inconsistent optimization goals in early training stages. To address this issue, except for the Hungarian loss, our method additionally feeds ground-truth bounding boxes with noises into Transformer decoder and trains the model to reconstruct the original boxes, which effectively reduces the bipartite graph matching difficulty and leads to a faster convergence. Our method is universal and can be easily plugged into any DETR-like methods by adding dozens of lines of code to achieve a remarkable improvement. As a result, our DN-DETR results in a remarkable improvement ($+1.9$AP) under the same setting and achieves the best result (AP $43.4$ and $48.6$ with $12$ and $50$ epochs of training respectively) among DETR-like methods with ResNet-$50$ backbone. Compared with the baseline under the same setting, DN-DETR achieves comparable performance with $50\%$ training epochs. Code is available at \url{https://github.com/FengLi-ust/DN-DETR}.
translated by 谷歌翻译
The DETR object detection approach applies the transformer encoder and decoder architecture to detect objects and achieves promising performance. In this paper, we present a simple approach to address the main problem of DETR, the slow convergence, by using representation learning technique. In this approach, we detect an object bounding box as a pair of keypoints, the top-left corner and the center, using two decoders. By detecting objects as paired keypoints, the model builds up a joint classification and pair association on the output queries from two decoders. For the pair association we propose utilizing contrastive self-supervised learning algorithm without requiring specialized architecture. Experimental results on MS COCO dataset show that Pair DETR can converge at least 10x faster than original DETR and 1.5x faster than Conditional DETR during training, while having consistently higher Average Precision scores.
translated by 谷歌翻译
Detection Transformer (DETR) and Deformable DETR have been proposed to eliminate the need for many hand-designed components in object detection while demonstrating good performance as previous complex hand-crafted detectors. However, their performance on Video Object Detection (VOD) has not been well explored. In this paper, we present TransVOD, the first end-to-end video object detection system based on spatial-temporal Transformer architectures. The first goal of this paper is to streamline the pipeline of VOD, effectively removing the need for many hand-crafted components for feature aggregation, e.g., optical flow model, relation networks. Besides, benefited from the object query design in DETR, our method does not need complicated post-processing methods such as Seq-NMS. In particular, we present a temporal Transformer to aggregate both the spatial object queries and the feature memories of each frame. Our temporal transformer consists of two components: Temporal Query Encoder (TQE) to fuse object queries, and Temporal Deformable Transformer Decoder (TDTD) to obtain current frame detection results. These designs boost the strong baseline deformable DETR by a significant margin (2 %-4 % mAP) on the ImageNet VID dataset. TransVOD yields comparable performances on the benchmark of ImageNet VID. Then, we present two improved versions of TransVOD including TransVOD++ and TransVOD Lite. The former fuses object-level information into object query via dynamic convolution while the latter models the entire video clips as the output to speed up the inference time. We give detailed analysis of all three models in the experiment part. In particular, our proposed TransVOD++ sets a new state-of-the-art record in terms of accuracy on ImageNet VID with 90.0 % mAP. Our proposed TransVOD Lite also achieves the best speed and accuracy trade-off with 83.7 % mAP while running at around 30 FPS on a single V100 GPU device. Code and models will be available for further research.
translated by 谷歌翻译
DETR是使用变压器编码器 - 解码器架构的第一端到端对象检测器,并在高分辨率特征映射上展示竞争性能但低计算效率。随后的工作变形Detr,通过更换可变形的关注来提高DEDR的效率,这实现了10倍的收敛性和改进的性能。可变形DETR使用多尺度特征来改善性能,但是,与DETR相比,编码器令牌的数量增加了20倍,编码器注意的计算成本仍然是瓶颈。在我们的初步实验中,我们观察到,即使只更新了编码器令牌的一部分,检测性能也几乎没有恶化。灵感来自该观察,我们提出了稀疏的DETR,其仅选择性更新预期的解码器预期的令牌,从而有效地检测模型。此外,我们表明在编码器中的所选令牌上应用辅助检测丢失可以提高性能,同时最小化计算开销。即使在Coco数据集上只有10%的编码器令牌,我们验证稀疏DETR也可以比可变形DETR实现更好的性能。尽管只有编码器令牌稀疏,但总计算成本减少了38%,与可变形的Detr相比,每秒帧(FPS)增加42%。代码可在https://github.com/kakaobrain/sparse-dett
translated by 谷歌翻译
虽然用变压器(DETR)的检测越来越受欢迎,但其全球注意力建模需要极其长的培训期,以优化和实现有前途的检测性能。现有研究的替代方案主要开发先进的特征或嵌入设计来解决培训问题,指出,基于地区的兴趣区域(ROI)的检测细化可以很容易地帮助减轻DETR方法培训的难度。基于此,我们在本文中介绍了一种新型的经常性闪闪发光的解码器(Rego)。特别是,REGO采用多级复发处理结构,以帮助更准确地逐渐关注前景物体。在每个处理阶段,从ROI的闪烁特征提取视觉特征,其中来自上阶段的检测结果的放大边界框区域。然后,引入了基于一瞥的解码器,以提供基于前一级的瞥见特征和注意力建模输出的精细检测结果。在实践中,Refo可以很容易地嵌入代表性的DETR变体,同时保持其完全端到端的训练和推理管道。特别地,Refo帮助可变形的DETR在MSCOCO数据集上实现44.8AP,只有36个训练时期,与需要500和50时期的第一DETR和可变形的DETR相比,分别可以分别实现相当的性能。实验还表明,Rego始终如一地提升不同DETR探测器的性能高达7%的相对增益,在相同的50次训练时期。代码可通过https://github.com/zhechen/deformable-detr-rego获得。
translated by 谷歌翻译
我们为变体视觉任务提供了一个概念上简单,灵活和通用的视觉感知头,例如分类,对象检测,实例分割和姿势估计以及不同的框架,例如单阶段或两个阶段的管道。我们的方法有效地标识了图像中的对象,同时同时生成高质量的边界框或基于轮廓的分割掩码或一组关键点。该方法称为Unihead,将不同的视觉感知任务视为通过变压器编码器体系结构学习的可分配点。给定固定的空间坐标,Unihead将其自适应地分散到了不同的空间点和有关它们的关系的原因。它以多个点的形式直接输出最终预测集,使我们能够在具有相同头部设计的不同框架中执行不同的视觉任务。我们展示了对成像网分类的广泛评估以及可可套件的所有三个曲目,包括对象检测,实例分割和姿势估计。如果没有铃铛和口哨声,Unihead可以通过单个视觉头设计统一这些视觉任务,并与为每个任务开发的专家模型相比,实现可比的性能。我们希望我们的简单和通用的Unihead能够成为可靠的基线,并有助于促进通用的视觉感知研究。代码和型号可在https://github.com/sense-x/unihead上找到。
translated by 谷歌翻译
最近提出的检测变压器(DETR)已建立了一个完全端到端的范式以进行对象检测。但是,DETR遭受慢训练的融合,这阻碍了其对各种检测任务的适用性。我们观察到,由于对象查询和编码图像特征之间的语义不一致,DETR的缓慢收敛在很大程度上归因于将对象查询与相关区域匹配的困难。通过此观察,我们设计了与DETR ++(SAM-DETR ++)设计的语义对齐匹配,以加速DETR的收敛并改善检测性能。 SAM-DETR ++的核心是一个插件模块,该模块将对象查询和编码图像功能投射到相同的功能嵌入空间中,在该空间中,每个对象查询都可以轻松地与具有相似语义的相关区域匹配。此外,SAM-DETR ++搜索了多个代表性关键点,并利用其功能以具有增强的表示能力的语义对齐匹配。此外,SAM-DETR ++可以根据设计的语义对准匹配,以粗到5的方式有效地融合多尺度特征。广泛的实验表明,所提出的SAM-DETR ++实现了优越的收敛速度和竞争性检测准确性。此外,作为一种插件方法,SAM-DETR ++可以以更好的性能补充现有的DITR收敛解决方案,仅使用12个训练时代获得44.8%的AP和49.1%的AP,并使用Resnet-50上的CoCo Val2017上的50个训练时代获得50个训练时期。代码可在https://github.com/zhanggongjie/sam-detr上找到。
translated by 谷歌翻译