对自然和人制过程的研究通常会导致长时间有序值的长序列,也就是时间序列(TS)。这样的过程通常由多个状态组成,例如机器的操作模式,使观测过程中的状态变化会导致测量值形状的分布变化。时间序列分割(TSS)试图发现TS事后的这种变化,以推断数据生成过程的变化。通常将TSS视为无监督的学习问题,目的是识别某些统计属性可区分的细分。 TSS的当前算法要求用户设置依赖域的超参数,对TS值分布进行假设或可检测更改的类型,以限制其适用性。常见的超参数是段均匀性和变更点的数量的度量,对于每个数据集,这尤其难以调节。我们提出了TSS的一种新颖,高度准确,无参数和域的无义方法的方法。扣子分层将TS分为两个部分。更改点是通过训练每个可能的拆分点的二进制TS分类器来确定的,并选择最能识别从任何一个分区的子序列的一个拆分。 CLASP使用两种新颖的定制算法从数据中学习了其主要的两个模型参数。在我们使用115个数据集的基准测试的实验评估中,我们表明,扣子优于准确性,并且可以快速且可扩展。此外,我们使用几个现实世界的案例研究强调了扣子的特性。
translated by 谷歌翻译
图主直觉是一个短时间序列,在较大的时间序列中重复自身大致相同。这样的主题通常代表隐藏的结构,例如心电图记录中的心跳或脑电图中的睡眠纺锤体。主题发现(MD)是在给定输入系列中找到此类主题的任务。由于有不同的定义,因此存在许多算法。作为中心参数,它们都采用了基序的长度L和图案发生之间的最大距离R。但是,实际上,R的合适值很难确定前期,并且发现的图案显示出很高的可变性。设置错误的输入值将导致一个与噪声无法区分的主题。因此,使用这些方法找到一个有趣的主题需要广泛的试用和错误。我们对MD问题提出了不同的方法。我们将k- motiflet定义为长度为l的基序的精确k出现,其最大成对距离是最小的。这将MD问题颠倒了:我们的中心参数不是距离阈值r,而是主题集的所需尺寸K,我们显示的更直观且易于设置。基于此定义,我们提出了用于查找K-单体并分析其复杂性的精确和近似算法。为了进一步缓解我们的方法的使用,我们描述了扩展,以自动确定其输入参数的正确/合适值。因此,第一次提取有意义的主题集在没有任何A-Priori知识的情况下变得可行。通过评估现实世界的用例并将其与4种最先进的MD算法进行比较,我们表明我们提出的算法在定量上是(a)较高的,在较高的相似性上找到较大的基序集,(b)在质量上更好,导致,导致更清晰,更易于解释主题,(c)的运行时间最低。
translated by 谷歌翻译
紧凑和节能的可穿戴传感器的发展导致生物信号的可用性增加。为了分析这些连续记录的,通常是多维的时间序列,能够进行有意义的无监督数据分割是一个吉祥的目标。实现这一目标的一种常见方法是将时间序列中的变更点确定为分割基础。但是,传统的更改点检测算法通常带有缺点,从而限制了其现实世界的适用性。值得注意的是,他们通常依靠完整的时间序列可用,因此不能用于实时应用程序。另一个常见的限制是,它们处理多维时间序列的分割(或无法)。因此,这项工作的主要贡献是提出一种新型的无监督分段算法,用于多维时间序列,名为潜在空间无监督的语义细分(LS-USS),该算法旨在轻松地与在线和批处理数据一起使用。在将LS-USS与其他最先进的更改点检测算法进行比较时,在各种现实世界数据集上,在离线和实时设置中,LS-USS在PAR或更好的性能上都可以系统地实现。
translated by 谷歌翻译
TimeSeries Partitioning是大多数机器学习驱动的传感器的IOT应用程序的重要步骤。本文介绍了一种采样效率,鲁棒,时序分割模型和算法。我们表明,通过基于最大平均差异(MMD)的分割目标来学习特定于分割目标的表示,我们的算法可以鲁布布地检测不同应用程序的时间序列事件。我们的损耗功能允许我们推断是否从相同的分布(空假设)中绘制了连续的样本序列,并确定拒绝零假设的对之间的变化点(即,来自不同的分布)。我们展示了其在基于环境传感的活动识别的实际IOT部署中的适用性。此外,虽然文献中存在许多关于变更点检测的作品,但我们的模型明显更简单,匹配或优于最先进的方法。我们可以平均地在9-93秒内完全培训我们的模型,而在不同应用程序上的数据的差异很小。
translated by 谷歌翻译
流媒体数据中对异常的实时检测正在受到越来越多的关注,因为它使我们能够提高警报,预测故障并检测到整个行业的入侵或威胁。然而,很少有人注意比较流媒体数据(即在线算法)的异常检测器的有效性和效率。在本文中,我们介绍了来自不同算法家族(即基于距离,密度,树木或投影)的主要在线检测器的定性合成概述,并突出了其构建,更新和测试检测模型的主要思想。然后,我们对在线检测算法的定量实验评估以及其离线对应物进行了彻底的分析。检测器的行为与不同数据集(即元功能)的特征相关,从而提供了对其性能的元级分析。我们的研究介绍了文献中几个缺失的见解,例如(a)检测器对随机分类器的可靠性以及什么数据集特性使它们随机执行; (b)在线探测器在何种程度上近似离线同行的性能; (c)哪种绘制检测器的策略和更新原始图最适合检测仅在数据集的功能子空间中可见的异常; (d)属于不同算法家族的探测器的有效性与效率之间的权衡是什么; (e)数据集的哪些特定特征产生在线算法以胜过所有其他特征。
translated by 谷歌翻译
The detection of anomalies in time series data is crucial in a wide range of applications, such as system monitoring, health care or cyber security. While the vast number of available methods makes selecting the right method for a certain application hard enough, different methods have different strengths, e.g. regarding the type of anomalies they are able to find. In this work, we compare six unsupervised anomaly detection methods with different complexities to answer the questions: Are the more complex methods usually performing better? And are there specific anomaly types that those method are tailored to? The comparison is done on the UCR anomaly archive, a recent benchmark dataset for anomaly detection. We compare the six methods by analyzing the experimental results on a dataset- and anomaly type level after tuning the necessary hyperparameter for each method. Additionally we examine the ability of individual methods to incorporate prior knowledge about the anomalies and analyse the differences of point-wise and sequence wise features. We show with broad experiments, that the classical machine learning methods show a superior performance compared to the deep learning methods across a wide range of anomaly types.
translated by 谷歌翻译
准确性是当前工作的关键重点,用于时间序列分类。但是,许多应用程序中的速度和数据降低同样重要,尤其是当数据量表和存储需求迅速增加时。当前的MTSC算法需要数百个计算小时才能完成培训和预测。这是由于多元时间序列数据的性质,该数据随时间序列,其长度和通道数量而增长。在许多应用程序中,并非所有渠道都对分类任务有用。因此,我们需要可以有效选择有用的渠道并节省计算资源的方法。我们提出并评估两种用于渠道选择的方法。我们的技术通过由原型时间序列表示每个类,并根据类之间的原型距离执行通道选择。主要假设是有用的通道可以在类之间进行更好的分离。因此,类原型之间具有较高距离的通道更有用。在UEA多元时间序列分类(MTSC)基准上,我们表明这些技术可实现显着的数据降低和分类器加速,以达到类似的分类精度。在训练最先进的MTSC算法之前,将通道选择作为预处理步骤,并节省了约70 \%的计算时间和数据存储,并保留了精确度。此外,我们的方法使甚至可以使用不使用通道选择或前向通道选择的有效分类器(例如Rocket)获得了更好的准确性。为了进一步研究我们的技术的影响,我们介绍了对具有100多个通道的合成多元时间序列数据集进行分类的实验,以及在具有50个渠道的数据集上进行的真实世界案例研究。我们的渠道选择方法可通过保留或提高的精度可显着减少数据。
translated by 谷歌翻译
分类链是一种用于在多标签分类中建模标签依赖性的有效技术。但是,该方法需要标签的固定静态顺序。虽然理论上,任何顺序都足够了,实际上,该订单对最终预测的质量具有大量影响。动态分类链表示每个实例对分类的想法,可以动态选择预测标签的顺序。这种方法的天真实现的复杂性是禁止的,因为它需要训练一系列分类器,以满足标签的每种可能置换。为了有效地解决这个问题,我们提出了一种基于随机决策树的新方法,该方法可以动态地选择每个预测的标签排序。我们凭经验展示了下一个标签的动态选择,通过在否则不变的随机决策树模型下使用静态排序。 %和实验环境。此外,我们还展示了基于极端梯度提升树的替代方法,其允许更具目标的动态分级链训练。我们的结果表明,该变体优于随机决策树和其他基于树的多标签分类方法。更重要的是,动态选择策略允许大大加速培训和预测。
translated by 谷歌翻译
无论是在功能选择的领域还是可解释的AI领域,都有基于其重要性的“排名”功能的愿望。然后可以将这种功能重要的排名用于:(1)减少数据集大小或(2)解释机器学习模型。但是,在文献中,这种特征排名没有以系统的,一致的方式评估。许多论文都有不同的方式来争论哪些具有重要性排名最佳的特征。本文通过提出一种新的评估方法来填补这一空白。通过使用合成数据集,可以事先知道特征重要性得分,从而可以进行更系统的评估。为了促进使用新方法的大规模实验,在Python建造了一个名为FSEVAL的基准测定框架。该框架允许并行运行实验,并在HPC系统上的计算机上分布。通过与名为“权重和偏见”的在线平台集成,可以在实时仪表板上进行交互探索图表。该软件作为开源软件发布,并在PYPI平台上以包裹发行。该研究结束时,探索了一个这样的大规模实验,以在许多方面找到参与算法的优势和劣势。
translated by 谷歌翻译
概念漂移过程挖掘(PM)是一种挑战,因为古典方法假设进程处于稳态,即事件共享相同的进程版本。我们对这些领域的交叉点进行了系统的文献综述,从而审查了过程采矿中的概念漂移,并提出了用于漂移检测和在线流程挖掘的现有技术的分类,以实现不断发展的环境。现有的作品描绘了(i)PM仍然主要关注离线分析,并且(ii)由于缺乏公共评估协议,数据集和指标,过程中的概念漂移技术的评估是麻烦的。
translated by 谷歌翻译
Detecting abrupt changes in data distribution is one of the most significant tasks in streaming data analysis. Although many unsupervised Change-Point Detection (CPD) methods have been proposed recently to identify those changes, they still suffer from missing subtle changes, poor scalability, or/and sensitive to noise points. To meet these challenges, we are the first to generalise the CPD problem as a special case of the Change-Interval Detection (CID) problem. Then we propose a CID method, named iCID, based on a recent Isolation Distributional Kernel (IDK). iCID identifies the change interval if there is a high dissimilarity score between two non-homogeneous temporal adjacent intervals. The data-dependent property and finite feature map of IDK enabled iCID to efficiently identify various types of change points in data streams with the tolerance of noise points. Moreover, the proposed online and offline versions of iCID have the ability to optimise key parameter settings. The effectiveness and efficiency of iCID have been systematically verified on both synthetic and real-world datasets.
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
尽管自动图像分析的重要性不断增加,但最近的元研究揭示了有关算法验证的主要缺陷。性能指标对于使用的自动算法的有意义,客观和透明的性能评估和验证尤其是关键,但是在使用特定的指标进行给定的图像分析任务时,对实际陷阱的关注相对较少。这些通常与(1)无视固有的度量属性,例如在存在类不平衡或小目标结构的情况下的行为,(2)无视固有的数据集属性,例如测试的非独立性案例和(3)无视指标应反映的实际生物医学领域的兴趣。该动态文档的目的是说明图像分析领域通常应用的性能指标的重要局限性。在这种情况下,它重点介绍了可以用作图像级分类,语义分割,实例分割或对象检测任务的生物医学图像分析问题。当前版本是基于由全球60多家机构的国际图像分析专家进行的关于指标的Delphi流程。
translated by 谷歌翻译
近年来,随着传感器和智能设备的广泛传播,物联网(IoT)系统的数据生成速度已大大增加。在物联网系统中,必须经常处理,转换和分析大量数据,以实现各种物联网服务和功能。机器学习(ML)方法已显示出其物联网数据分析的能力。但是,将ML模型应用于物联网数据分析任务仍然面临许多困难和挑战,特别是有效的模型选择,设计/调整和更新,这给经验丰富的数据科学家带来了巨大的需求。此外,物联网数据的动态性质可能引入概念漂移问题,从而导致模型性能降解。为了减少人类的努力,自动化机器学习(AUTOML)已成为一个流行的领域,旨在自动选择,构建,调整和更新机器学习模型,以在指定任务上实现最佳性能。在本文中,我们对Automl区域中模型选择,调整和更新过程中的现有方法进行了审查,以识别和总结将ML算法应用于IoT数据分析的每个步骤的最佳解决方案。为了证明我们的发现并帮助工业用户和研究人员更好地实施汽车方法,在这项工作中提出了将汽车应用于IoT异常检测问题的案例研究。最后,我们讨论并分类了该领域的挑战和研究方向。
translated by 谷歌翻译
基于签名的技术使数学洞察力洞悉不断发展的数据的复杂流之间的相互作用。这些见解可以自然地转化为理解流数据的数值方法,也许是由于它们的数学精度,已被证明在数据不规则而不是固定的情况下分析流的数据以及数据和数据的尺寸很有用样本量均为中等。了解流的多模式数据是指数的:$ d $ d $的字母中的$ n $字母中的一个单词可以是$ d^n $消息之一。签名消除了通过采样不规则性引起的指数级噪声,但仍然存在指数量的信息。这项调查旨在留在可以直接管理指数缩放的域中。在许多问题中,可伸缩性问题是一个重要的挑战,但需要另一篇调查文章和进一步的想法。这项调查描述了一系列环境集足够小以消除大规模机器学习的可能性,并且可以有效地使用一小部分免费上下文和原则性功能。工具的数学性质可以使他们对非数学家的使用恐吓。本文中介绍的示例旨在弥合此通信差距,并提供从机器学习环境中绘制的可进行的工作示例。笔记本可以在线提供这些示例中的一些。这项调查是基于伊利亚·雪佛兰(Ilya Chevryev)和安德烈·科米利津(Andrey Kormilitzin)的早期论文,它们在这种机械开发的较早时刻大致相似。本文说明了签名提供的理论见解是如何在对应用程序数据的分析中简单地实现的,这种方式在很大程度上对数据类型不可知。
translated by 谷歌翻译
超参数优化构成了典型的现代机器学习工作流程的很大一部分。这是由于这样一个事实,即机器学习方法和相应的预处理步骤通常只有在正确调整超参数时就会产生最佳性能。但是在许多应用中,我们不仅有兴趣仅仅为了预测精度而优化ML管道;确定最佳配置时,必须考虑其他指标或约束,从而导致多目标优化问题。由于缺乏知识和用于多目标超参数优化的知识和容易获得的软件实现,因此通常在实践中被忽略。在这项工作中,我们向读者介绍了多个客观超参数优化的基础知识,并激励其在应用ML中的实用性。此外,我们从进化算法和贝叶斯优化的领域提供了现有优化策略的广泛调查。我们说明了MOO在几个特定ML应用中的实用性,考虑了诸如操作条件,预测时间,稀疏,公平,可解释性和鲁棒性之类的目标。
translated by 谷歌翻译
尽管机器学习方法已在金融领域广泛使用,但在非常成功的学位上,这些方法仍然可以根据解释性,可比性和可重复性来定制特定研究和不透明。这项研究的主要目的是通过提供一种通用方法来阐明这一领域,该方法是调查 - 不合Snostic且可解释给金融市场从业人员,从而提高了其效率,降低了进入的障碍,并提高了实验的可重复性。提出的方法在两个自动交易平台组件上展示。也就是说,价格水平,众所周知的交易模式和一种新颖的2步特征提取方法。该方法依赖于假设检验,该假设检验在其他社会和科学学科中广泛应用,以有效地评估除简单分类准确性之外的具体结果。提出的主要假设是为了评估所选的交易模式是否适合在机器学习设置中使用。在整个实验中,我们发现在机器学习设置中使用所考虑的交易模式仅由统计数据得到部分支持,从而导致效果尺寸微不足道(反弹7- $ 0.64 \ pm 1.02 $,反弹11 $ 0.38 \ pm 0.98 $,并且篮板15- $ 1.05 \ pm 1.16 $),但允许拒绝零假设。我们展示了美国期货市场工具上的通用方法,并提供了证据表明,通过这种方法,我们可以轻松获得除传统绩效和盈利度指标之外的信息指标。这项工作是最早将这种严格的统计支持方法应用于金融市场领域的工作之一,我们希望这可能是更多研究的跳板。
translated by 谷歌翻译
尽管机器学习取得了巨大进步(ML),但数据不平衡的培训仍然在许多现实世界中构成挑战。在解决此问题的一系列不同技术中,采样算法被视为有效的解决方案。但是,问题更为根本,许多作品强调了实例硬度的重要性。这个问题是指管理不安全或可能嘈杂的实例的重要性,这些实例更可能被错误分类并作为分类绩效不佳的根本原因。本文介绍了Hardvis,这是一种视觉分析系统,旨在处理实例硬度,主要在分类场景中。我们提出的系统协助用户在视觉上比较数据类型的不同分布,根据局部特征选择实例类型,这些实例后来将受主动采样方法的影响,并验证来自底漆或过采样技术的建议对ML模型有益。此外,我们允许用户找到和采样轻松且难以对所有课程的培训实例进行分类,而不是统一地采样/过采样。用户可以从不同角度探索数据子集以决定所有这些参数,而HardVis则跟踪其步骤并评估模型在测试集中分别评估模型的预测性能。最终结果是一个均衡的数据集,可增强ML模型的预测能力。通过假设使用情况和用例证明了Hardvis的功效和有效性。最后,我们还研究了系统的有用,基于我们从ML专家那里收到的反馈。
translated by 谷歌翻译
即使机器学习算法已经在数据科学中发挥了重要作用,但许多当前方法对输入数据提出了不现实的假设。由于不兼容的数据格式,或数据集中的异质,分层或完全缺少的数据片段,因此很难应用此类方法。作为解决方案,我们提出了一个用于样本表示,模型定义和培训的多功能,统一的框架,称为“ Hmill”。我们深入审查框架构建和扩展的机器学习的多个范围范式。从理论上讲,为HMILL的关键组件的设计合理,我们将通用近似定理的扩展显示到框架中实现的模型所实现的所有功能的集合。本文还包含有关我们实施中技术和绩效改进的详细讨论,该讨论将在MIT许可下发布供下载。该框架的主要资产是其灵活性,它可以通过相同的工具对不同的现实世界数据源进行建模。除了单独观察到每个对象的一组属性的标准设置外,我们解释了如何在框架中实现表示整个对象系统的图表中的消息推断。为了支持我们的主张,我们使用框架解决了网络安全域的三个不同问题。第一种用例涉及来自原始网络观察结果的IoT设备识别。在第二个问题中,我们研究了如何使用以有向图表示的操作系统的快照可以对恶意二进制文件进行分类。最后提供的示例是通过网络中实体之间建模域黑名单扩展的任务。在所有三个问题中,基于建议的框架的解决方案可实现与专业方法相当的性能。
translated by 谷歌翻译
We review clustering as an analysis tool and the underlying concepts from an introductory perspective. What is clustering and how can clusterings be realised programmatically? How can data be represented and prepared for a clustering task? And how can clustering results be validated? Connectivity-based versus prototype-based approaches are reflected in the context of several popular methods: single-linkage, spectral embedding, k-means, and Gaussian mixtures are discussed as well as the density-based protocols (H)DBSCAN, Jarvis-Patrick, CommonNN, and density-peaks.
translated by 谷歌翻译