深度学习模型通常遭受域移位问题,其中一个源域培训的模型不会概括到其他看不见的域。在这项工作中,我们调查了单源域泛化问题:培训一个深入的网络,在训练数据仅从一个源域中获得的训练数据中的条件,这是在医学成像应用程序中常见的情况下。我们在跨域医学图像分割的背景下解决这个问题。在这种情况下,域移主要由不同的采集过程引起。我们提出了一种简单的因果关系激发数据增强方法,使分段模型暴露于合成域移位的训练示例。具体而言,1)使得深度模型在图像强度和纹理中的差异差异,我们采用了一系列随机加权浅网络。他们使用不同的外观变换来增强训练图像。 2)此外,我们表明图像中物体之间的虚假相关性对域的鲁棒性有害。网络可能被网络作为特定于域的线索进行预测的相关性,并且它们可能会破坏看不见的域。我们通过因果干预删除这些杂散相关性。这是通过分层潜在相关对象的外表来实现的。所提出的方法在三个横域分割任务上验证:跨型号(CT-MRI)腹部图像分割,串序(BSSFP-LGE)心动MRI分割和跨中心前列腺MRI分段。当在看不见的域测试时,所提出的方法与竞争方法相比,与竞争方法相比产生一致的性能。
translated by 谷歌翻译
甚至在没有受限,监督的情况下,也提出了甚至在没有受限或有限的情况下学习普遍陈述的方法。使用适度数量的数据可以微调新的目标任务,或者直接在相应任务中实现显着性能的无奈域中使用的良好普遍表示。这种缓解数据和注释要求为计算机愿景和医疗保健的应用提供了诱人的前景。在本辅导纸上,我们激励了对解散的陈述,目前关键理论和详细的实际构建块和学习此类表示的标准的需求。我们讨论医学成像和计算机视觉中的应用,强调了在示例钥匙作品中进行的选择。我们通过呈现剩下的挑战和机会来结束。
translated by 谷歌翻译
卷积神经网络(CNN)已经实现了医学图像细分的最先进性能,但需要大量的手动注释进行培训。半监督学习(SSL)方法有望减少注释的要求,但是当数据集大小和注释图像的数量较小时,它们的性能仍然受到限制。利用具有类似解剖结构的现有注释数据集来协助培训,这有可能改善模型的性能。然而,由于目标结构的外观不同甚至成像方式,跨解剖结构域的转移进一步挑战。为了解决这个问题,我们提出了跨解剖结构域适应(CS-CADA)的对比度半监督学习,该学习适应一个模型以在目标结构域中细分相似的结构,这仅需要通过利用一组现有现有的现有的目标域中的限制注释源域中相似结构的注释图像。我们使用特定领域的批归归量表(DSBN)来单独地标准化两个解剖域的特征图,并提出跨域对比度学习策略,以鼓励提取域不变特征。它们被整合到一个自我兼容的均值老师(SE-MT)框架中,以利用具有预测一致性约束的未标记的目标域图像。广泛的实验表明,我们的CS-CADA能够解决具有挑战性的跨解剖结构域移位问题,从而在视网膜血管图像和心脏MR图像的帮助下,在X射线图像中准确分割冠状动脉,并借助底底图像,分别仅给定目标域中的少量注释。
translated by 谷歌翻译
While deep learning methods hitherto have achieved considerable success in medical image segmentation, they are still hampered by two limitations: (i) reliance on large-scale well-labeled datasets, which are difficult to curate due to the expert-driven and time-consuming nature of pixel-level annotations in clinical practices, and (ii) failure to generalize from one domain to another, especially when the target domain is a different modality with severe domain shifts. Recent unsupervised domain adaptation~(UDA) techniques leverage abundant labeled source data together with unlabeled target data to reduce the domain gap, but these methods degrade significantly with limited source annotations. In this study, we address this underexplored UDA problem, investigating a challenging but valuable realistic scenario, where the source domain not only exhibits domain shift~w.r.t. the target domain but also suffers from label scarcity. In this regard, we propose a novel and generic framework called ``Label-Efficient Unsupervised Domain Adaptation"~(LE-UDA). In LE-UDA, we construct self-ensembling consistency for knowledge transfer between both domains, as well as a self-ensembling adversarial learning module to achieve better feature alignment for UDA. To assess the effectiveness of our method, we conduct extensive experiments on two different tasks for cross-modality segmentation between MRI and CT images. Experimental results demonstrate that the proposed LE-UDA can efficiently leverage limited source labels to improve cross-domain segmentation performance, outperforming state-of-the-art UDA approaches in the literature. Code is available at: https://github.com/jacobzhaoziyuan/LE-UDA.
translated by 谷歌翻译
这项工作提出了一个新颖的框架CISFA(对比图像合成和自我监督的特征适应),该框架建立在图像域翻译和无监督的特征适应性上,以进行跨模式生物医学图像分割。与现有作品不同,我们使用单方面的生成模型,并在输入图像的采样贴片和相应的合成图像之间添加加权贴片对比度损失,该图像用作形状约束。此外,我们注意到生成的图像和输入图像共享相似的结构信息,但具有不同的方式。因此,我们在生成的图像和输入图像上强制实施对比损失,以训练分割模型的编码器,以最大程度地减少学到的嵌入空间中成对图像之间的差异。与依靠对抗性学习进行特征适应的现有作品相比,这种方法使编码器能够以更明确的方式学习独立于域的功能。我们对包含腹腔和全心的CT和MRI图像的分割任务进行了广泛评估。实验结果表明,所提出的框架不仅输出了较小的器官形状变形的合成图像,而且还超过了最先进的域适应方法的较大边缘。
translated by 谷歌翻译
Machine learning models rely on various assumptions to attain high accuracy. One of the preliminary assumptions of these models is the independent and identical distribution, which suggests that the train and test data are sampled from the same distribution. However, this assumption seldom holds in the real world due to distribution shifts. As a result models that rely on this assumption exhibit poor generalization capabilities. Over the recent years, dedicated efforts have been made to improve the generalization capabilities of these models collectively known as -- \textit{domain generalization methods}. The primary idea behind these methods is to identify stable features or mechanisms that remain invariant across the different distributions. Many generalization approaches employ causal theories to describe invariance since causality and invariance are inextricably intertwined. However, current surveys deal with the causality-aware domain generalization methods on a very high-level. Furthermore, we argue that it is possible to categorize the methods based on how causality is leveraged in that method and in which part of the model pipeline is it used. To this end, we categorize the causal domain generalization methods into three categories, namely, (i) Invariance via Causal Data Augmentation methods which are applied during the data pre-processing stage, (ii) Invariance via Causal representation learning methods that are utilized during the representation learning stage, and (iii) Invariance via Transferring Causal mechanisms methods that are applied during the classification stage of the pipeline. Furthermore, this survey includes in-depth insights into benchmark datasets and code repositories for domain generalization methods. We conclude the survey with insights and discussions on future directions.
translated by 谷歌翻译
对于医学图像分割,想象一下,如果仅使用源域中的MR图像训练模型,它的性能如何直接在目标域中进行CT图像?这种设置,即概括的跨模块分割,拥有其临床潜力,其比其他相关设置更具挑战性,例如域适应。为实现这一目标,我们本文通过利用在我们更广泛的分割期间利用增强的源相似和源不同的图像来提出新的双标准化模块。具体而言,给定单个源域,旨在模拟未经证明的目标域中可能的外观变化,我们首先利用非线性变换来增加源相似和源不同的图像。然后,为了充分利用这两种类型的增强,我们所提出的基于双重定量的模型采用共享骨干但独立的批量归一化层,用于单独归一化。之后,我们提出了一种基于风格的选择方案来自动选择测试阶段的适当路径。在三个公开可用的数据集上进行了广泛的实验,即Brats,跨型心脏和腹部多器官数据集表明我们的方法优于其他最先进的域概括方法。
translated by 谷歌翻译
神经网络在医疗图像分割任务上的成功通常依赖于大型标记的数据集用于模型培训。但是,由于数据共享和隐私问题,获取和手动标记大型医疗图像集是资源密集的,昂贵的,有时是不切实际的。为了应对这一挑战,我们提出了一个通用的对抗数据增强框架Advchain,旨在提高培训数据对医疗图像分割任务的多样性和有效性。 AdvChain通过动态数据增强来增强数据,从而产生随机链接的光线像和几何转换,以类似于现实而又具有挑战性的成像变化以扩展训练数据。通过在培训期间共同优化数据增强模型和分割网络,可以生成具有挑战性的示例,以增强下游任务的网络可推广性。所提出的对抗数据增强不依赖生成网络,可以用作通用分割网络中的插件模块。它在计算上是有效的,适用于低声监督和半监督学习。我们在两个MR图像分割任务上分析和评估该方法:心脏分割和前列腺分割具有有限的标记数据。结果表明,所提出的方法可以减轻对标记数据的需求,同时提高模型泛化能力,表明其在医学成像应用中的实际价值。
translated by 谷歌翻译
实现域适应是有价值的,以将学习知识从标记为CT数据集传输到腹部多器官分段的目标未标记的MR DataSet。同时,非常希望避免目标数据集的高注重成本并保护源数据集的隐私。因此,我们提出了一种有效的无核心无监督域适应方法,用于跨型号腹部多器官分段而不访问源数据集。所提出的框架的过程包括两个阶段。在第一阶段,特征映射统计损失用于对准顶部分段网络中的源和目标特征的分布,并使用熵最小化损耗来鼓励高席位细分。从顶部分段网络输出的伪标签用于指导样式补偿网络生成类似源图像。从中间分割网络输出的伪标签用于监督所需模型的学习(底部分段网络)。在第二阶段,循环学习和像素自适应掩模细化用于进一步提高所需模型的性能。通过这种方法,我们在肝脏,肾脏,左肾肾脏和脾脏的分割中实现了令人满意的性能,骰子相似系数分别为0.884,0.891,0.864和0.911。此外,当存在目标注释数据时,所提出的方法可以很容易地扩展到情况。该性能在平均骰子相似度系数的0.888至0.922增加到0.888至0.922,靠近监督学习(0.929),只有一个标记的MR卷。
translated by 谷歌翻译
对分布(OOD)数据的概括是人类自然的能力,但对于机器而言挑战。这是因为大多数学习算法强烈依赖于i.i.d.〜对源/目标数据的假设,这在域转移导致的实践中通常会违反。域的概括(DG)旨在通过仅使用源数据进行模型学习来实现OOD的概括。在过去的十年中,DG的研究取得了长足的进步,导致了广泛的方法论,例如,基于域的一致性,元学习,数据增强或合奏学习的方法,仅举几例;还在各个应用领域进行了研究,包括计算机视觉,语音识别,自然语言处理,医学成像和强化学习。在本文中,首次提供了DG中的全面文献综述,以总结过去十年来的发展。具体而言,我们首先通过正式定义DG并将其与其他相关领域(如域适应和转移学习)联系起来来涵盖背景。然后,我们对现有方法和理论进行了彻底的审查。最后,我们通过有关未来研究方向的见解和讨论来总结这项调查。
translated by 谷歌翻译
语义分割在广泛的计算机视觉应用中起着基本作用,提供了全球对图像​​的理解的关键信息。然而,最先进的模型依赖于大量的注释样本,其比在诸如图像分类的任务中获得更昂贵的昂贵的样本。由于未标记的数据替代地获得更便宜,因此无监督的域适应达到了语义分割社区的广泛成功并不令人惊讶。本调查致力于总结这一令人难以置信的快速增长的领域的五年,这包含了语义细分本身的重要性,以及将分段模型适应新环境的关键需求。我们提出了最重要的语义分割方法;我们对语义分割的域适应技术提供了全面的调查;我们揭示了多域学习,域泛化,测试时间适应或无源域适应等较新的趋势;我们通过描述在语义细分研究中最广泛使用的数据集和基准测试来结束本调查。我们希望本调查将在学术界和工业中提供具有全面参考指导的研究人员,并有助于他们培养现场的新研究方向。
translated by 谷歌翻译
域适应(DA)最近在医学影像社区提出了强烈的兴趣。虽然已经提出了大量DA技术进行了用于图像分割,但大多数这些技术已经在私有数据集或小公共可用数据集上验证。此外,这些数据集主要解决了单级问题。为了解决这些限制,与第24届医学图像计算和计算机辅助干预(Miccai 2021)结合第24届国际会议组织交叉模态域适应(Crossmoda)挑战。 Crossmoda是无监督跨型号DA的第一个大型和多级基准。挑战的目标是分割参与前庭施瓦新瘤(VS)的后续和治疗规划的两个关键脑结构:VS和Cochleas。目前,使用对比度增强的T1(CET1)MRI进行VS患者的诊断和监测。然而,使用诸如高分辨率T2(HRT2)MRI的非对比度序列越来越感兴趣。因此,我们创建了一个无人监督的跨模型分段基准。训练集提供注释CET1(n = 105)和未配对的非注释的HRT2(n = 105)。目的是在测试集中提供的HRT2上自动对HRT2进行单侧VS和双侧耳蜗分割(n = 137)。共有16支球队提交了评估阶段的算法。顶级履行团队达成的表现水平非常高(最佳中位数骰子 - vs:88.4%; Cochleas:85.7%)并接近完全监督(中位数骰子 - vs:92.5%;耳蜗:87.7%)。所有顶级执行方法都使用图像到图像转换方法将源域图像转换为伪目标域图像。然后使用这些生成的图像和为源图像提供的手动注释进行培训分割网络。
translated by 谷歌翻译
卷积神经网络已广泛应用于医学图像分割,并取得了相当大的性能。但是,性能可能会受到训练数据(源域)和测试数据(目标域)之间域间隙的显着影响。为了解决此问题,我们提出了一种基于数据操作的域泛化方法,称为域概括(AADG)的自动增强。我们的AADG框架可以有效地采样数据增强策略,从而产生新的领域并从适当的搜索空间中多样化训练集。具体而言,我们介绍了一项新的代理任务,以最大程度地提高了多个增强新颖的域之间的多样性,该域通过单位球体空间中的凹痕距离来衡量,从而使自动化的增强可牵引。对抗性训练和深入的强化学习有效地搜索了目标。全面执行了11个公开底部的底面图像数据集的定量和定性实验(四个用于视网膜血管分割,四个用于视盘和杯子和杯(OD/OC)分割(OD/OC)分割,视网膜病变细分进行了三个)。两个用于视网膜脉管系统分割的八八个数据集进一步涉及验证跨模式泛化。我们提出的AADG通过视网膜船,OD/OC和病变细分任务的相当大的利润来表现出最新的概括性能,并优于现有方法。学到的政策在经验上得到了证实为模型不平衡,并且可以很好地转移到其他模型中。源代码可在https://github.com/crazorback/aadg上找到。
translated by 谷歌翻译
卷积神经网络(CNN)在基准数据集上实现了出色的分割精度,在该数据集中,训练和测试集来自同一领域,但它们的性能可以大大降低看不见的域,这阻碍了CNN在许多临床场景中的部署。大多数现有作品通过收集多域数据集进行培训来改善模型外(OOD)的鲁棒性,这很昂贵,由于隐私和后勤问题,这很昂贵,可能并不总是可行的。在这项工作中,我们专注于仅使用单域数据集提高模型鲁棒性。我们提出了一个名为MaxStyle的新型数据增强框架,该框架最大程度地提高了模型OOD性能的样式增强功能。它将辅助风格的图像解码器附加到用于鲁棒特征学习和数据增强的分割网络。重要的是,MaxStyle通过通过噪音扩大样式空间并通过对抗性训练来扩大样式空间并搜索潜在特征的最差案例样式组成,从而增强了图像样式多样性和硬度的增强数据。通过对多个公共心脏和前列腺MR数据集进行了广泛的实验,我们证明了MaxStyle可显着改善对看不见的腐败的稳健性,以及在两个低 - 不知名的位点和未知的图像序列之间的共同分布变化以及共同的分布变化。和高训练数据设置。可以在https://github.com/cherise215/maxstyle上找到该代码。
translated by 谷歌翻译
在许多图像引导的临床方法中,医学图像分割是一个基本和关键的步骤。基于深度学习的细分方法的最新成功通常取决于大量标记的数据,这特别困难且昂贵,尤其是在医学成像领域中,只有专家才能提供可靠和准确的注释。半监督学习已成为一种吸引人的策略,并广泛应用于医学图像分割任务,以训练注释有限的深层模型。在本文中,我们对最近提议的半监督学习方法进行了全面综述,并总结了技术新颖性和经验结果。此外,我们分析和讨论现有方法的局限性和几个未解决的问题。我们希望这篇评论可以激发研究界探索解决这一挑战的解决方案,并进一步促进医学图像细分领域的发展。
translated by 谷歌翻译
域间隙主要由可变的医学图像质量引起的构成,这是训练实验室中的分割模型与应用训练的模型在未见临床数据之间的路径上的主要障碍。为了解决这个问题,已经提出了域泛化方法,但是通常使用静态卷积,并且灵活性较低。在本文中,我们提出了一个基于域和内容自适应卷积(DCAC)的多源域概括模型,以分割不同模式的医学图像。具体而言,我们设计了域自适应卷积(DAC)模块和内容自适应卷积(CAC)模块,并将两者都合并到编码器解码器中。在DAC模块中,动态卷积头是根据输入的预测域代码进行的,以使我们的模型适应看不见的目标域。在CAC模块中,动态卷积头在全局图像特征上进行条件,以使我们的模型适应测试图像。我们针对基线的DCAC模型和针对前列腺分割,COVID-19病变分段和视频杯/视盘分段任务的四种最先进的域概括方法评估了DCAC模型。我们的结果不仅表明所提出的DCAC模型在每个分割任务上都优于所有竞争方法,而且还证明了DAC和CAC模块的有效性。代码可在\ url {https://git.io/dcac}上获得。
translated by 谷歌翻译
对于医学图像分析,在一个或几个领域训练的分割模型由于不同数据采集策略之间的差异而缺乏概括性的能力,无法看不见域。我们认为,分割性能的退化主要归因于过度拟合源域和域移位。为此,我们提出了一种新颖的可推广医学图像分割方法。要具体而言,我们通过将分割模型与自学域特异性图像恢复(DSIR)模块相结合,将方法设计为多任务范式。我们还设计了一个随机的振幅混音(RAM)模块,该模块结合了不同域图像的低级频率信息以合成新图像。为了指导我们的模型对域转移有抵抗力,我们引入了语义一致性损失。我们证明了我们在医学图像中两个可公开的分段基准测试中的方法的性能,这证实了我们的方法可以实现最先进的性能。
translated by 谷歌翻译
深度学习已被广​​泛用于医学图像分割,并且录制了录制了该领域深度学习的成功的大量论文。在本文中,我们使用深层学习技术对医学图像分割的全面主题调查。本文进行了两个原创贡献。首先,与传统调查相比,直接将深度学习的文献分成医学图像分割的文学,并为每组详细介绍了文献,我们根据从粗略到精细的多级结构分类目前流行的文献。其次,本文侧重于监督和弱监督的学习方法,而不包括无监督的方法,因为它们在许多旧调查中引入而且他们目前不受欢迎。对于监督学习方法,我们分析了三个方面的文献:骨干网络的选择,网络块的设计,以及损耗功能的改进。对于虚弱的学习方法,我们根据数据增强,转移学习和交互式分割进行调查文献。与现有调查相比,本调查将文献分类为比例不同,更方便读者了解相关理由,并将引导他们基于深度学习方法思考医学图像分割的适当改进。
translated by 谷歌翻译
一种可以推广到看不见的对比和扫描仪设置的器官分割方法可以显着减少对深度学习模型的重新培训的需求。域概括(DG)旨在实现这一目标。但是,大多数用于分割的DG方法都需要训练期间来自多个领域的训练数据。我们提出了一种针对从\ emph {single}域的数据训练的器官分割的新型对抗域的概括方法。我们通过学习对抗结构域合成器(AD)合成新域,并假定合成域覆盖了足够大的合理分布区域,以便可以从合成域中插值看不见的域。我们提出了一个共同的信息正常化程序,以实现合成域中图像之间的语义一致性,可以通过贴片级对比度学习来估计。我们评估了各种器官分割的方法,以进行看不见的模式,扫描协议和扫描仪位点。
translated by 谷歌翻译
无监督的域适应性(UDA)是一个至关重要的协议,用于迁移从标记的源域中学到的信息,以促进未标记的异质目标域中的实现。尽管UDA通常经过来自两个域的数据的共同培训,但由于对患者数据隐私或知识产权的担忧,访问标记的源域数据通常受到限制。为了避开此问题,我们提出了“现成的(OS)” UDA(OSUDA),针对图像分割,通过调整在源域中训练的OS进行调整到目标域,在适应中没有源域数据的情况下, 。为了实现这一目标,我们旨在开发新的批准归一化(BN)统计适应框架。特别是,我们通过指数型衰减策略逐渐适应了特定于域的低阶BN统计数据,例如平均值和差异,同时明确执行可共享的可共享高阶BN统计的一致性,例如,扩展和转移因子缩放和转移因子。 ,通过我们的优化目标。我们还通过低阶统计差异和缩放因素来自适应量化通道的可传递性,以评估每个通道的重要性。记忆一致的自我训练策略利用可靠的伪标签来稳定,有效的无监督适应。我们评估了基于OSUDA的跨模式和交叉型脑肿瘤分割和心脏MR到CT分割任务的框架。我们的实验结果表明,我们的内存一致性的OSUDA的性能优于现有的 - 源 - 删除的UDA方法,并且具有与源数据的UDA方法相似的性能。
translated by 谷歌翻译