State-of-the-art deep-learning-based approaches to Natural Language Processing (NLP) are credited with various capabilities that involve reasoning with natural language texts. In this paper we carry out a large-scale empirical study investigating the detection of formally valid inferences in controlled fragments of natural language for which the satisfiability problem becomes increasingly complex. We find that, while transformer-based language models perform surprisingly well in these scenarios, a deeper analysis re-veals that they appear to overfit to superficial patterns in the data rather than acquiring the logical principles governing the reasoning in these fragments.
translated by 谷歌翻译
调查变压器模型的推理能力,并为他们发现新的具有挑战性的任务,这是一个非常感兴趣的主题。最近的研究发现这些模型在表演自然语言表达的正式逻辑理论上表现出令人惊讶的强烈。然而,这些研究的缺点是他们没有考虑到逻辑理论,当随机均匀抽样时,不一定导致硬实例。我们提出了一种新的方法,用于创建挑战算法推理数据集,其专注于自然语言可满足性(NLSAT)问题。关键的想法是利用良好命题SAT问题的经验采样以及语言的复杂性学习的洞察力。这种方法允许我们轻松地从硬实例区分,并系统地提高Ruletaker等现有推理基准的复杂性。我们发现,鉴于足够的训练数据,当前的变压器令人惊讶地稳健地解决了产生的NLSAT基本上增加的难度问题。它们还表现出一定程度的规模不变性 - 概括到更大尺寸和范围的问题的能力。然而,我们的结果也揭示了重要的局限性:仔细的培训数据采样对于建立更大问题的模型来说至关重要,变压器模型的“有限的规模不变性”表明他们远非学习强大的演绎推理算法。
translated by 谷歌翻译
Winograd架构挑战 - 一套涉及代词参考消歧的双句话,似乎需要使用致辞知识 - 是由2011年的赫克托勒维克斯提出的。到2019年,基于大型预先训练的变压器的一些AI系统基于语言模型和微调这些问题,精度优于90%。在本文中,我们审查了Winograd架构挑战的历史并评估了其重要性。
translated by 谷歌翻译
基于变压器的语言模型最近在许多自然语言任务中取得了显着的结果。但是,通常通过利用大量培训数据来实现排行榜的性能,并且很少通过将明确的语言知识编码为神经模型。这使许多人质疑语言学对现代自然语言处理的相关性。在本文中,我介绍了几个案例研究,以说明理论语言学和神经语言模型仍然相互关联。首先,语言模型通过提供一个客观的工具来测量语义距离,这对语言学家很有用,语义距离很难使用传统方法。另一方面,语言理论通过提供框架和数据源来探究我们的语言模型,以了解语言理解的特定方面,从而有助于语言建模研究。本论文贡献了三项研究,探讨了语言模型中语法 - 听觉界面的不同方面。在论文的第一部分中,我将语言模型应用于单词类灵活性的问题。我将Mbert作为语义距离测量的来源,我提供了有利于将单词类灵活性分析为方向过程的证据。在论文的第二部分中,我提出了一种方法来测量语言模型中间层的惊奇方法。我的实验表明,包含形态句法异常的句子触发了语言模型早期的惊喜,而不是语义和常识异常。最后,在论文的第三部分中,我适应了一些心理语言学研究,以表明语言模型包含了论证结构结构的知识。总而言之,我的论文在自然语言处理,语言理论和心理语言学之间建立了新的联系,以为语言模型的解释提供新的观点。
translated by 谷歌翻译
我们提出了一项合成任务,乐高(学习平等和小组操作),该任务封装了遵循推理链的问题,我们研究了变压器体系结构如何学习这项任务。我们特别注意数据效应,例如预处理(看似无关的NLP任务)和数据集组成(例如,训练和测试时间时的链长度不同),以及体系结构变体,例如重量绑定层或添加卷积组件。我们研究了受过训练的模型最终如何在任务中取得成功,尤其是我们能够在某种程度上(一定程度地)理解一些注意力头以及网络中的信息如何流动。基于这些观察结果,我们提出了一个假设,即在这里进行预训练仅是因为是智能初始化而不是网络中存储的深层知识。我们还观察到,在某些数据制度中,受过训练的变压器发现“快捷方式”解决方案遵循推理链,这阻碍了该模型将其推广到主要任务的简单变体的能力,而且我们发现人们可以防止适当的快捷方式架构修改或仔细的数据准备。在我们的发现的激励下,我们开始探索学习执行C程序的任务,在此过程中,对变压器进行了卷积修改,即在密钥/查询/值图中添加卷积结构,显示出令人鼓舞的优势。
translated by 谷歌翻译
我们介绍了概率世界,这是一个新的全象征性的贝叶斯型号的语义解析和推理模型,作为对更具领域和任务通用NLU和AI的研究计划的第一步。人类创造了他们观察的内部心理模型,这极大地帮助理解和理解大量问题。在PWM中,句子的含义,获得世界的事实,以及推理的中间步骤都以人类可读的形式表达,具有可解释性的设计目标。 PWM是贝叶斯,专为能够概括新域和新任务而设计。我们派生并实现了一种推导算法,通过解析和释放捕获这些句子的语义的潜在世界模型来读取句子,并在两个域名问题答案数据集中评估它:(1)校对器和(2 )我们呼叫虚构的新数据集,旨在更具实际语言的代表,但仍然足够简单,以重新评估推理能力,同时对启发式鲁棒。我们的方法均优于两者的基线,从而将其值证明其作为概念验证。
translated by 谷歌翻译
我们介绍了一项对自然语言(NL)推理的人类通知,开放域和逻辑上复杂且多样的数据集,配备了一阶逻辑(fol)注释。对开本由1,435个示例(独特的结论)组成,每个示例与487组前提之一搭配,这些场所作为规则,可用于演绎理由,以理解每个结论的有效性。前提和结论的逻辑正确性是通过其平行注释来确保的,这些注释会自动由我们的FOL推理引擎验证。除了主要的NL推理任务外,对开本中的NL-FOL对自动构成了使用FOL作为逻辑形式的新的NL-FOL翻译数据集。我们对广泛的实验系统地评估了对中型语言模型(BERT,ROBERTA)进行微调的FOL推理能力,并且在大型语言模型(GPT-NEOX,OPT,OPT,GPT-3,Codex)上促成了很少的射击。对于NL-FOL翻译,我们尝试使用GPT-3和Codex。我们的结果表明,公开可用的最强大的大语言模型之一(LLM),GPT-3 Davinci,仅比随机结果略好,而在一部分集的一部分中,该模型尤其不好,并且在预测该模型方面尤其不好。纠正虚假和未知结论的真实价值。我们的数据集和代码可在https://github.com/yale-lily/folio上找到。
translated by 谷歌翻译
Transformers have been shown to be able to perform deductive reasoning on a logical rulebase containing rules and statements written in English natural language. While the progress is promising, it is currently unclear if these models indeed perform logical reasoning by understanding the underlying logical semantics in the language. To this end, we propose RobustLR, a suite of evaluation datasets that evaluate the robustness of these models to minimal logical edits in rulebases and some standard logical equivalence conditions. In our experiments with RoBERTa and T5, we find that the models trained in prior works do not perform consistently on the different perturbations in RobustLR, thus showing that the models are not robust to the proposed logical perturbations. Further, we find that the models find it especially hard to learn logical negation and disjunction operators. Overall, using our evaluation sets, we demonstrate some shortcomings of the deductive reasoning-based language models, which can eventually help towards designing better models for logical reasoning over natural language. All the datasets and code base have been made publicly available.
translated by 谷歌翻译
象征性推理,基于规则的符号操作,是人类智慧的标志。然而,基于规则的系统的成功有限与基于学习的系统在外面的正式域之外的竞争中,例如自动定理证明。我们假设这是由于过去尝试中的规则的手动构建。在这项工作中,我们询问我们如何构建基于规则的系统,可以推理自然语言输入,但没有手动构建规则。我们提出了Metaqnl,这是一种“准自然”语言,可以表达正式逻辑和自然语言句子,并梅多斯诱惑,一种学习算法,它从训练数据组成的训练和答案,有或没有中间推理步骤。我们的方法在多个推理基准上实现了最先进的准确性;它学习具有更少数据的紧凑型号,不仅可以答案,而且产生答案。此外,对现实世界的形态学分析基准测试的实验表明,我们可以处理噪音和歧义。代码将在https://github.com/princeton-vl/metaqnl发布。
translated by 谷歌翻译
自然语言处理的机器学习快速进步有可能改变有关人类学习语言的辩论。但是,当前人工学习者和人类的学习环境和偏见以削弱从学习模拟获得的证据的影响的方式分歧。例如,当今最有效的神经语言模型接受了典型儿童可用的语言数据量的大约一千倍。为了增加计算模型的可学习性结果的相关性,我们需要培训模型学习者,而没有比人类具有显着优势的学习者。如果合适的模型成功地获得了一些目标语言知识,则可以提供一个概念证明,即在假设的人类学习方案中可以学习目标。合理的模型学习者将使我们能够进行实验操作,以对学习环境中的变量进行因果推断,并严格测试史密斯风格的贫困声明,主张根据人类对人类的先天语言知识,基于有关可学习性的猜测。由于实用和道德的考虑因素,人类受试者将永远无法实现可比的实验,从而使模型学习者成为必不可少的资源。到目前为止,试图剥夺当前模型的不公平优势,为关键语法行为(例如可接受性判断)获得亚人类结果。但是,在我们可以合理地得出结论,语言学习需要比当前模型拥有更多的特定领域知识,我们必须首先以多模式刺激和多代理互动的形式探索非语言意见,以使学习者更有效地学习学习者来自有限的语言输入。
translated by 谷歌翻译
For natural language understanding (NLU) technology to be maximally useful, it must be able to process language in a way that is not exclusive to a single task, genre, or dataset. In pursuit of this objective, we introduce the General Language Understanding Evaluation (GLUE) benchmark, a collection of tools for evaluating the performance of models across a diverse set of existing NLU tasks. By including tasks with limited training data, GLUE is designed to favor and encourage models that share general linguistic knowledge across tasks. GLUE also includes a hand-crafted diagnostic test suite that enables detailed linguistic analysis of models. We evaluate baselines based on current methods for transfer and representation learning and find that multi-task training on all tasks performs better than training a separate model per task. However, the low absolute performance of our best model indicates the need for improved general NLU systems.
translated by 谷歌翻译
当前的语言模型可以产生高质量的文本。他们只是复制他们之前看到的文本,或者他们学习了普遍的语言抽象吗?要取笑这些可能性,我们介绍了乌鸦,这是一套评估生成文本的新颖性,专注于顺序结构(n-gram)和句法结构。我们将这些分析应用于四种神经语言模型(LSTM,变压器,变换器-XL和GPT-2)。对于本地结构 - 例如,单个依赖性 - 模型生成的文本比来自每个模型的测试集的人类生成文本的基线显着不那么新颖。对于大规模结构 - 例如,总句结构 - 模型生成的文本与人生成的基线一样新颖甚至更新颖,但模型仍然有时复制,在某些情况下,在训练集中重复超过1000字超过1,000字的通道。我们还表现了广泛的手动分析,表明GPT-2的新文本通常在形态学和语法中形成良好,但具有合理的语义问题(例如,是自相矛盾)。
translated by 谷歌翻译
众所周知,端到端的神经NLP体系结构很难理解,这引起了近年来为解释性建模的许多努力。模型解释的基本原则是忠诚,即,解释应准确地代表模型预测背后的推理过程。这项调查首先讨论了忠诚的定义和评估及其对解释性的意义。然后,我们通过将方法分为五类来介绍忠实解释的最新进展:相似性方法,模型内部结构的分析,基于反向传播的方法,反事实干预和自我解释模型。每个类别将通过其代表性研究,优势和缺点来说明。最后,我们从它们的共同美德和局限性方面讨论了上述所有方法,并反思未来的工作方向忠实的解释性。对于有兴趣研究可解释性的研究人员,这项调查将为该领域提供可访问且全面的概述,为进一步探索提供基础。对于希望更好地了解自己的模型的用户,该调查将是一项介绍性手册,帮助选择最合适的解释方法。
translated by 谷歌翻译
主张神经符号人工智能(NESY)断言,将深度学习与象征性推理相结合将导致AI更强大,而不是本身。像深度学习一样成功,人们普遍认为,即使我们最好的深度学习系统也不是很擅长抽象推理。而且,由于推理与语言密不可分,因此具有直觉的意义,即自然语言处理(NLP)将成为NESY特别适合的候选人。我们对实施NLP实施NESY的研究进行了结构化审查,目的是回答Nesy是否确实符合其承诺的问题:推理,分布概括,解释性,学习和从小数据的可转让性以及新的推理到新的域。我们研究了知识表示的影响,例如规则和语义网络,语言结构和关系结构,以及隐式或明确的推理是否有助于更高的承诺分数。我们发现,将逻辑编译到神经网络中的系统会导致满足最NESY的目标,而其他因素(例如知识表示或神经体系结构的类型)与实现目标没有明显的相关性。我们发现在推理的定义方式上,特别是与人类级别的推理有关的许多差异,这会影响有关模型架构的决策并推动结论,这些结论在整个研究中并不总是一致的。因此,我们倡导采取更加有条不紊的方法来应用人类推理的理论以及适当的基准的发展,我们希望这可以更好地理解该领域的进步。我们在GitHub上提供数据和代码以进行进一步分析。
translated by 谷歌翻译
Transfer learning, where a model is first pre-trained on a data-rich task before being finetuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts all text-based language problems into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled data sets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new "Colossal Clean Crawled Corpus", we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our data set, pre-trained models, and code.
translated by 谷歌翻译
自然语言处理(NLP)已成为当前人工智能繁荣中的主要应用领域之一。转移学习已经启用了大量深入学习的神经网络,接受了语言建模任务,以大大提高了所有语言任务的性能。有趣的是,当模型培训使用包含软件代码的数据培训时,它们在从自然语言规范中生成功能计算机代码时展示了显着的能力。我们认为这是一种难题,用于神经模型为生成词组结构语法提供了一种替代理论,以说明语言有效。由于编程语言的语法由短语结构语法决定,因此成功的神经模型显然是对编程语言的理论基础的理论基础,以及通过扩展,自然语言来实现。我们认为语言模型的术语模型是误导性的,因为深度学习模型不是语言的理论模型,并提出采用语料库模型,这更好地反映了模型的成因和内容。
translated by 谷歌翻译
评论是源代码的重要组成部分,是文档的主要来源。这引起了人们对使用大量注释的兴趣训练或评估消耗或生产它们的工具,例如生成甲骨文,甚至是从注释中生成代码,或自动生成代码摘要。这项工作大部分对评论的结构和质量做出了强烈的假设,例如假设它们主要由适当的英语句子组成。但是,我们对这些用例的现有评论的实际质量知之甚少。评论通常包含在其他类型的文本中看不到的独特结构和元素,并且从中过滤或提取信息需要额外的谨慎。本文探讨了来自GitHub的840个最受欢迎的开源项目和Srilab数据集的8422个项目的Python评论的内容和质量,并且Na \“ Ive vs.深入过滤的影响都可以使用现有注释来用于使用现有注释。培训和评估产生评论的系统。
translated by 谷歌翻译
We present LogiGAN, an unsupervised adversarial pre-training framework for improving logical reasoning abilities of language models. Upon automatic identifying logical reasoning phenomena in massive text corpus via detection heuristics, we train language models to predict the masked-out logical statements. Inspired by the facilitation effect of reflective thinking in human learning, we analogically simulate the learning-thinking process with an adversarial Generator-Verifier architecture to assist logic learning. LogiGAN implements a novel sequential GAN approach that (a) circumvents the non-differentiable challenge of the sequential GAN by leveraging the Generator as a sentence-level generative likelihood scorer with a learning objective of reaching scoring consensus with the Verifier; (b) is computationally feasible for large-scale pre-training with arbitrary target length. Both base and large size language models pre-trained with LogiGAN demonstrate obvious performance improvement on 12 datasets requiring general reasoning abilities, revealing the fundamental role of logic in broad reasoning, as well as the effectiveness of LogiGAN. Ablation studies on LogiGAN components reveal the relative orthogonality between linguistic and logic abilities and suggest that reflective thinking's facilitation effect might also generalize to machine learning.
translated by 谷歌翻译
We demonstrate that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even becoming competitive with prior state-ofthe-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous nonsparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks. We also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora.
translated by 谷歌翻译
“感应头”是注意力头,它实现了一种简单的算法来完成令牌序列,例如[a] [b] ... [a] - > [b]。在这项工作中,我们提供了一个假设的初步和间接证据,即诱导头可能构成大型大型变压器模型中所有“文本学习”中大多数的机制(即减少在增加代币指数时损失的损失)。我们发现,诱导头在与秘密学习能力突然急剧上的急剧上升的位置完全相同,这是训练损失的颠簸。我们提出了六种互补的证据,认为诱导头可能是任何大小的变压器模型中一般性内部学习的机理来源。对于仅关注的小型模型,我们提供了有力的因果证据。对于具有MLP的较大模型,我们提供相关证据。
translated by 谷歌翻译