回答集编程(ASP)已成为一种流行的和相当复杂的声明问题解决方法。这是由于其具有吸引力的地址解决方案的工作流程,这是可以轻松解决问题解决的方法,即使对于计算机科学外的守护者而言。与此不同,底层技术的高度复杂性使得ASP专家越来越难以将想法付诸实践。有关解决此问题,本教程旨在使用户能够构建自己的基于ASP的系统。更确切地说,我们展示了ASP系统Clingo如何用于扩展ASP和实现定制的专用系统。为此,我们提出了两个替代方案。我们从传统的AI技术开始,并展示元编程如何用于扩展ASP。这是一种相当轻的方法,依赖于Clingo的reation特征来使用ASP本身表达新功能。与此不同,本教程的主要部分使用传统的编程(在Python中)来通过其应用程序编程接口操纵Clingo。这种方法允许改变和控制ASP的整个模型 - 地面解决工作流程。 COMENT of Clingo的新应用程序课程使我们能够通过自定义类似于Clingo中的进程来绘制Clingo的基础架构。例如,我们可能会互动到程序的抽象语法树,控制各种形式的多射击求解,并为外国推论设置理论传播者。另一种横截面结构,跨越元以及应用程序编程是Clingo的中间格式,即指定底层接地器和求解器之间的界面。我们通过示例和几个非琐碎的案例研究说明了本教程的前述概念和技术。
translated by 谷歌翻译
最近已经提出了几个查询和分数来解释对ML模型的个人预测。鉴于ML型号的灵活,可靠和易于应用的可解释性方法,我们预见了需要开发声明语言以自然地指定不同的解释性查询。我们以原则的方式通过源于逻辑,称为箔,允许表达许多简单但重要的解释性查询,并且可以作为更具表现力解释性语言的核心来实现这一语言。我们研究箔片查询的两类ML模型的计算复杂性经常被视为容易解释:决策树和OBDD。由于ML模型的可能输入的数量是尺寸的指数,因此箔评估问题的易易性是精细的,但是可以通过限制模型的结构或正在评估的箔片段来实现。我们还以高级声明语言包装的箔片的原型实施,并执行实验,表明可以在实践中使用这种语言。
translated by 谷歌翻译
具有神经网络的顺序序列学习已成为序列预测任务的事实标准。这种方法通常使用强大的神经网络模拟本地分布,该方法可以在任意上下文上条件。虽然灵活和性能,这些模型通常需要大型数据集进行培训,并且可以在旨在测试组成概括的基准上非常失败。这项工作探讨了与准同步语法的序列到序列学习的替代,分层方法,其中目标树中的每个节点由源区中的节点传电。源和靶树木都被视为潜在的并在训练期间诱导。我们开发了语法的神经参数化,它能够在没有手动功能工程的情况下通过Combinatial规则的组合空间共享参数。我们将此潜在的神经语法应用于各种域 - 一种诊断语言导航任务,旨在测试组成泛化(扫描),样式转移和小型机器翻译,并发现它与标准基线相比表现得尊重。
translated by 谷歌翻译
我们介绍了一种称为编程拼图的新型编程挑战,作为方案合成的客观和全面评估,并释放Python编程拼图的开源数据集(P3)。每个拼图由短Python程序$ F $定义,目标是找到一个使$ F $返回true的输入。谜题是目的,因为每个人都由其验证者$ F $的源代码完全指定,因此评估为测试候选解决方案所需的$ F $。它们不需要答案密钥或输入/输出示例,也不依赖于自然语言理解。该数据集是全面的,因为它跨越一系列困难和域的问题,从琐碎的字符串操纵问题,经典编程谜题(例如,河内塔),用于采访/竞争编程问题(例如,动态编程),在算法和数学中的长期开放问题(例如,因子)。我们开发基准枚举程序合成,GPT-3和能够解决难题的食盒求解器 - 即使没有访问任何参考解决方案 - 通过从他们自己的过去的解决方案中学习。 Codex表现最佳,解决高达18%的397个测试问题的测试问题,每次尝试和80%的问题占1,000个问题。在一个小的用户学习中,我们发现拼图解决性能和编码体验之间的正相关性,以及人类和AI求解器的难题难度之间。因此,P3的进一步改进可能对许多程序合成区域产生重大影响。
translated by 谷歌翻译
Posibilistic Logic是处理不确定和部分不一致信息的最扩展方法。关于正常形式,可能性推理的进步大多专注于字幕形式。然而,现实世界问题的编码通常导致非人(NC)公式和NC-To-Clausal翻译,产生严重的缺点,严重限制了字符串推理的实际表现。因此,通过计算其原始NC形式的公式,我们提出了几种贡献,表明可能在可能的非字词推理中也是可能的显着进展。 {\ em首先,我们定义了{\ em possibilistic over非词素知识库,}或$ \ mathcal {\ overline {h}} _ \ sigma $的类别,其中包括类:可能主义的喇叭和命题角 - NC。 $ \ mathcal {\ overline {h}} _ \ sigma $被显示为标准喇叭类的一种NC类似的。 {\ em hightly},我们定义{\ em possibilistic非字词单元分辨率,}或$ \ mathcal {u} _ \ sigma $,并证明$ \ mathcal {u} _ \ sigma $正确计算不一致程度$ \ mathcal {\ overline {h}} _ \ sigma $成员。 $ \ Mathcal {Ur} _ \ \ Sigma $之前未提出,并以人为人的方式制定,这会让其理解,正式证明和未来延伸到非人类决议。 {\ em第三},我们证明计算$ \ mathcal {\ overline {h}} _ \ sigma $成员的不一致程度是多项式时间。虽然可能存在于可能存在的逻辑中的贸易课程,但所有这些都是字符串,因此,$ \ mathcal {\ overline {h}} _ \ sigma $ of to是可能的主要推理中的第一个特征的多项式非锁友类。
translated by 谷歌翻译
突出非克劳兰(NC)公式的富有表现性比基于氏子型公式的指数更丰富。然而,氏菌效率优于非克劳尿的效率。实际上,后者的一个主要弱点是,虽然喇叭子宫公式以及喇叭算法,对于高效率至关重要,但是已经提出了非符号形式的喇叭状公式。为了克服这种弱点,我们通过将喇叭图案充分提升到NC形式,定义HOLE非字母(HORN-NC)公式的混合类$ \ MATHBB {H_ {NC}}。争论$ \ MATHBB {H_ {NC}} $以及未来的Horn-NC算法,应随着喇叭类的股份效率增加,增加非信用效率。其次,我们:(i)给出$ \ mathbb的紧凑,归纳定义{h_ {nc}} $; (ii)证明了句法$ \ mathbb {h_ {nc}} $ suppups over class,但语义上两个类都是等效的,并且(iii)表征属于$ \ mathbb {h_ {nc}} $的非锁友公式。第三,我们定义了非字词单元分辨率计算,$ ur_ {nc} $,并证明它检查多项式时间$ \ mathbb {h_ {nc}} $的可靠性。这一事实是我们的知识,使$ \ mathbb {h_ {nc}} $中的nc推理中的第一个特征多项式类。最后,我们证明了$ \ mathbb {h_ {nc}} $线性识别,也是严格的是法官和比喇叭类呈指数富裕。我们在NC自动推理中讨论了这一点,例如,可靠性解决,定理证明,逻辑编程等可以直接受益于$ \ mathbb {h_ {nc} $和$ ur_ {nc} $,它作为其被证明属性的副产物,$ \ mathbb { H_ {NC}} $ as作为分析喇叭函数和含义系统的新替代方案。
translated by 谷歌翻译
我们概述了在其知识表示和声明问题解决的应用中的视角下的时间逻辑编程。这些程序是将通常规则与时间模态运算符组合的结果,如线性时间时间逻辑(LTL)。我们专注于最近的非单调形式主义的结果​​称为时间平衡逻辑(电话),该逻辑(电话)为LTL的全语法定义,但是基于平衡逻辑执行模型选择标准,答案集编程的众所周知的逻辑表征(ASP )。我们获得了稳定模型语义的适当延伸,以进行任意时间公式的一般情况。我们记得电话和单调基础的基本定义,这里的时间逻辑 - 和那里(THT),并研究无限和有限迹线之间的差异。我们还提供其他有用的结果,例如将转换成其他形式主义,如量化的平衡逻辑或二阶LTL,以及用于基于自动机计算的时间稳定模型的一些技术。在第二部分中,我们专注于实际方面,定义称为较近ASP的时间逻辑程序的句法片段,并解释如何在求解器Telingo的构建中被利用。
translated by 谷歌翻译
本文探讨了关系特级逻辑,这是一个与推理古典三段论的扩展中关系相关的逻辑系统系列。这些都是可判定的逻辑系统。我们证明了基于关系特级逻辑的自然亚家族的完整性定理和复杂性,由构造函数参加术语和句子。
translated by 谷歌翻译
近年来,视觉问题应答(VQA)在近年来,由于了解来自多种方式的信息(即图像,语言),近年来近年来在近年来的机器学习社区中获得了很多牵引力。在VQA中,基于一组图像提出了一系列问题,并且手头的任务是到达答案。为实现这一目标,我们采用了一种基于象征的推理方法,使用正式逻辑框架。图像和问题被转换为执行显式推理的符号表示。我们提出了一种正式的逻辑框架,其中(i)图像在场景图的帮助下将图像转换为逻辑背景事实,(ii)问题被基于变压器的深度学习模型转换为一阶谓词逻辑条款,(iii)通过使用背景知识和谓词条款的接地来执行可靠性检查,以获得答案。我们所提出的方法是高度解释的,并且可以通过人容易地分析管道中的每个步骤。我们验证了我们在CLEVR和GQA数据集上的方法。我们在Clevr DataSet上实现了99.6%的近似完美的准确性,可与艺术模式相当,展示正式逻辑是一个可行的工具来解决视觉问题的回答。我们的模型也是数据高效,在仅在培训数据的10%培训时,在缩放数据集中实现99.1%的准确性。
translated by 谷歌翻译
类比制作是人工智能和人工智能的核心,并在这种多样化任务中的应用程序的创造力作为致辞推理,学习,语言习得和故事讲述。本文从第一个原则介绍了一个摘要的类比比例的摘要代数框架,其形式的“$ a $的数量为$ b $ conal通用代数的常规设定中的$ c $ d $ d。这使我们能够以统一的方式比较可能跨越不同域的数学对象,这对于AI系统至关重要。事实证明,我们对类比比例的概念具有吸引力的数学属性。当我们从第一个原则构建我们的模型,只使用普通代数的基本概念,并且我们的模型问题是在文献中预先推出的类似商品比例的一些基本属性,以说服我们模型的合理性的读者,我们表明它可以自然嵌入通过模型 - 理论类型分为一阶逻辑,并从该角度证明类似的比例与结构保留映射兼容。这为其适用性提供了概念证据。在更广泛的意义上,本文是朝着模拟推理和学习系统理论的第一步,其潜在应用于基本的AI问题,如致料语言推理和计算学习和创造力。
translated by 谷歌翻译
源代码的最先进的神经模型倾向于在代码的生成时进行评估,并且通常在长地平任务中的产生,例如整个方法体的产生。我们建议使用静态程序分析仪的弱监督来解决这一缺陷。我们的神经统计方法允许深入的生成模型来象征地计算它已经生成的代码中的静态分析工具,长距离语义关系。在培训期间,该模型观察这些关系,并学习生成条件上的程序。考虑到包含该方法的类的剩余部分,我们将我们的方法应用于生成整个Java方法的问题。我们的实验表明,该方法显着地优于最先进的变换器和模型,明确试图在制作程序中没有基本语义错误的程序以及在句法匹配地面真理方面来学习此任务的模型。
translated by 谷歌翻译
英国主导填字游戏,英国的主要填字游戏是推进寻求语义复杂,高度成分语言的NLP系统的有希望的目标。密码线索像流利的自然语言一样读,但是由两部分进行前列组成:一个定义和播放密码需要字符级操作。专家人类使用创造性的智能来解决隐秘,灵活地结合语言,世界和领域知识。在本文中,我们进行了两个主要贡献。首先,我们向NLP系统提供了一个充满挑战的新基准,以便在更具创造性,人类的方式处理组成语言的挑战新的基准。在显示三种非神经方法和T5之后,一种最先进的神经语言模型,无法实现良好的性能,我们提出了第二种主要贡献:一种新的课程方法,其中模型首先进行微调在相关任务,如解读单词。我们还介绍了一个具有挑战性的数据拆分,检查子字标记模型的元语言功能,并通过扰动线索的晶片部分来调查模型系统性,表明T5表现出与人类解决部分符合的行为策略。虽然我们的课程方法大大提高了T5基线,但我们最好的模型仍然无法概括为人类可以的程度。因此,隐秘填字游戏仍然是NLP系统的未解决挑战和未来创新的潜在来源。
translated by 谷歌翻译
当前的语言模型可以产生高质量的文本。他们只是复制他们之前看到的文本,或者他们学习了普遍的语言抽象吗?要取笑这些可能性,我们介绍了乌鸦,这是一套评估生成文本的新颖性,专注于顺序结构(n-gram)和句法结构。我们将这些分析应用于四种神经语言模型(LSTM,变压器,变换器-XL和GPT-2)。对于本地结构 - 例如,单个依赖性 - 模型生成的文本比来自每个模型的测试集的人类生成文本的基线显着不那么新颖。对于大规模结构 - 例如,总句结构 - 模型生成的文本与人生成的基线一样新颖甚至更新颖,但模型仍然有时复制,在某些情况下,在训练集中重复超过1000字超过1,000字的通道。我们还表现了广泛的手动分析,表明GPT-2的新文本通常在形态学和语法中形成良好,但具有合理的语义问题(例如,是自相矛盾)。
translated by 谷歌翻译
知识表示中的一个突出问题是如何应对域名知识的本体的隐性后果来回回答查询。虽然这个问题在描述逻辑本体的领域中已被广泛研究,但在模糊或不精确的知识的背景下,令人惊讶地忽略了忽视,特别是从数学模糊逻辑的角度来看。在本文中,我们研究了应答联合查询和阈值查询的问题。模糊DL-Lite中的本体。具体而言,我们通过重写方法展示阈值查询应答W.r.t.一致的本体中仍保持在数据复杂性的$ AC_0 $中,但该联合查询应答高度依赖于所选三角标准,这对底层语义产生了影响。对于IDEMPodent G \“Odel T-Norm,我们提供了一种基于古典案例的减少的有效方法。本文在理论和实践中正在考虑和逻辑编程(TPLP)的实践。
translated by 谷歌翻译
自动解决数学字问题是自然语言处理领域的关键任务。最近的模型已达到其性能瓶颈,需要更高质量的培训数据。我们提出了一种新的数据增强方法,扭转了数学词问题的数学逻辑,以产生新的高质量数学问题,并介绍了能够在数学推理逻辑中受益的新知识点。我们在两个Sota Math Word问题解决模型上应用增强数据,并将我们的结果与强大的数据增强基线进行比较。实验结果表明了我们方法的有效性。我们在https://github.com/yiyunya/roda发布我们的代码和数据。
translated by 谷歌翻译
我们探索使用大型预用语言模型作为少量语义解析器。语义解析中的目标是给定自然语言输入的结构化含义表示。但是,培训语言模型以生成自然语言。为了弥合差距,我们使用语言模型来解释进入一个类似于英语的受控的子宫内的输入,可以自动映射到目标含义表示表示。我们的结果表明,只有少量的数据和较少的代码转换为类似英语的代表,我们为快速启动语义解析器的蓝图导致了对多个社区任务的令人惊讶的有效性能,大大超过基线方法也在相同的限制上培训数据。
translated by 谷歌翻译
AI最近的突破表明了深度学习和深度增强学习的显着力量。然而,这些发展已与特定任务联系在一起,并且分销外概括的进展受到限制。虽然假设可以通过结合合适的感应偏差来克服这些限制,但感应偏差本身的概念往往含糊不清,并且不提供有意义的指导。在论文中,我阐述了不同的学习方法,其中表示没有从神经结构中的偏差产生偏差,而是通过具有已知语义的给定的目标语言来学习。基本思想隐含在主流AI中,其中表示代表以从一阶逻辑的片段到概率结构因果模型的语言编码。挑战是从数据中学习传统上用手制作的表示。泛化是语言语义的结果。本文的目标是使这些想法明确,将它们放在更广泛的背景下,其中目标语言的设计至关重要,并在学习行动和计划的背景下说明它们。为此,在一般讨论之后,我考虑学习行动,一般政策和亚国的陈述(“内在奖励”)。在这些情况下,学习被制定为组合问题,但没有任何东西可以防止使用深度学习技术。实际上,通过具有已知语言的语言的学习表示提供了一个待学习的内容,而使用神经网络的学习表示提供了可以学习陈述的补充说明。挑战和机会是将两者带到一起。
translated by 谷歌翻译
自动问题应答(QA)系统的目的是以时间有效的方式向用户查询提供答案。通常在数据库(或知识库)或通常被称为语料库的文件集合中找到答案。在过去的几十年里,收购知识的扩散,因此生物医学领域的新科学文章一直是指数增长。因此,即使对于领域专家,也难以跟踪域中的所有信息。随着商业搜索引擎的改进,用户可以在某些情况下键入其查询并获得最相关的一小组文档,以及在某些情况下从文档中的相关片段。但是,手动查找所需信息或答案可能仍然令人疑惑和耗时。这需要开发高效的QA系统,该系统旨在为用户提供精确和精确的答案提供了生物医学领域的自然语言问题。在本文中,我们介绍了用于开发普通域QA系统的基本方法,然后彻底调查生物医学QA系统的不同方面,包括使用结构化数据库和文本集合的基准数据集和几种提出的方​​法。我们还探讨了当前系统的局限性,并探索潜在的途径以获得进一步的进步。
translated by 谷歌翻译
从头开始解决复杂问题通常是有挑战性的,但如果我们可以访问其解决方案的其他类似问题,则更容易 - 一种称为基于案例的推理(CBR)的范式。我们提出了一种神经象征性的CBR方法(CBR-KBQA),用于在大知识库上应答。 CBR-KBQA由非参数内存组成,该内存存储案例(问题和逻辑表单)和参数模型,该参数模型可以通过检索与其相关的案例来为新问题生成逻辑表单。在包含复杂问题的几个KBQA数据集上,CBR-KBQA实现了竞争性能。例如,在ComplexWebQuestions数据集上,CBR-KBQA以11 \%的准确度优于当前最新状态。此外,我们表明CBR-KBQA能够使用新案例\ EMPH {没有}任何进一步的培训:通过在案例存储器中纳入一些人类标记的示例,CBR-KBQA能够成功地生成包含未经看线KB实体的逻辑表格以及关系。
translated by 谷歌翻译
我用Hunglish2语料库训练神经电脑翻译任务的模型。这项工作的主要贡献在培训NMT模型期间评估不同的数据增强方法。我提出了5种不同的增强方法,这些方法是结构感知的,这意味着而不是随机选择用于消隐或替换的单词,句子的依赖树用作增强的基础。我首先关于神经网络的详细文献综述,顺序建模,神经机翻译,依赖解析和数据增强。经过详细的探索性数据分析和Hunglish2语料库的预处理之后,我使用所提出的数据增强技术进行实验。匈牙利语的最佳型号达到了33.9的BLEU得分,而英国匈牙利最好的模型达到了28.6的BLEU得分。
translated by 谷歌翻译