Both classical Fourier transform-based methods and neural network methods are widely used in image processing tasks. The former has better interpretability, whereas the latter often achieves better performance in practice. This paper introduces ButterflyNet2D, a regular CNN with sparse cross-channel connections. A Fourier initialization strategy for ButterflyNet2D is proposed to approximate Fourier transforms. Numerical experiments validate the accuracy of ButterflyNet2D approximating both the Fourier and the inverse Fourier transforms. Moreover, through four image processing tasks and image datasets, we show that training ButterflyNet2D from Fourier initialization does achieve better performance than random initialized neural networks.
translated by 谷歌翻译
离散的不变学习旨在在无限维函数空间中学习,其能力将功能的异质离散表示作为学习模型的输入和/或输出。本文提出了一个基于整体自动编码器(IAE-NET)的新型深度学习框架,用于离散不变学习。 IAE-NET的基本构建块由编码器和解码器组成,作为与数据驱动的内核的积分转换,以及编码器和解码器之间的完全连接的神经网络。这个基本的构建块并行地在宽的多通道结构中应用,该结构反复组成,形成了一个具有跳过连接作为IAE-NET的深度连接的神经网络。 IAE-NET接受了随机数据扩展的培训,该数据具有随机数据,以生成具有异质结构的培训数据,以促进离散化不变性学习的性能。提出的IAE-NET在预测数据科学中进行了各种应用,解决了科学计算中的前进和反向问题,以及信号/图像处理。与文献中的替代方案相比,IAE-NET在现有应用中实现了最先进的性能,并创建了广泛的新应用程序。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
神经运营商最近成为设计神经网络形式的功能空间之间的解决方案映射的流行工具。不同地,从经典的科学机器学习方法,以固定分辨率为输入参数的单个实例学习参数,神经运算符近似PDE系列的解决方案图。尽管他们取得了成功,但是神经运营商的用途迄今为止仅限于相对浅的神经网络,并限制了学习隐藏的管理法律。在这项工作中,我们提出了一种新颖的非局部神经运营商,我们将其称为非本体内核网络(NKN),即独立的分辨率,其特征在于深度神经网络,并且能够处理各种任务,例如学习管理方程和分类图片。我们的NKN源于神经网络的解释,作为离散的非局部扩散反应方程,在无限层的极限中,相当于抛物线非局部方程,其稳定性通过非本种载体微积分分析。与整体形式的神经运算符相似允许NKN捕获特征空间中的远程依赖性,而节点到节点交互的持续处理使NKNS分辨率独立于NKNS分辨率。与神经杂物中的相似性,在非本体意义上重新解释,并且层之间的稳定网络动态允许NKN的最佳参数从浅到深网络中的概括。这一事实使得能够使用浅层初始化技术。我们的测试表明,NKNS在学习管理方程和图像分类任务中占据基线方法,并概括到不同的分辨率和深度。
translated by 谷歌翻译
Implicit Neural Representations (INRs) encoding continuous multi-media data via multi-layer perceptrons has shown undebatable promise in various computer vision tasks. Despite many successful applications, editing and processing an INR remains intractable as signals are represented by latent parameters of a neural network. Existing works manipulate such continuous representations via processing on their discretized instance, which breaks down the compactness and continuous nature of INR. In this work, we present a pilot study on the question: how to directly modify an INR without explicit decoding? We answer this question by proposing an implicit neural signal processing network, dubbed INSP-Net, via differential operators on INR. Our key insight is that spatial gradients of neural networks can be computed analytically and are invariant to translation, while mathematically we show that any continuous convolution filter can be uniformly approximated by a linear combination of high-order differential operators. With these two knobs, INSP-Net instantiates the signal processing operator as a weighted composition of computational graphs corresponding to the high-order derivatives of INRs, where the weighting parameters can be data-driven learned. Based on our proposed INSP-Net, we further build the first Convolutional Neural Network (CNN) that implicitly runs on INRs, named INSP-ConvNet. Our experiments validate the expressiveness of INSP-Net and INSP-ConvNet in fitting low-level image and geometry processing kernels (e.g. blurring, deblurring, denoising, inpainting, and smoothening) as well as for high-level tasks on implicit fields such as image classification.
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
我们试图通过探索(深)卷积神经网络和伏特拉卷积之间的关系来理解卷积神经网络。我们提出了一种新颖的方法来解释和研究神经网络的总体特征,而不会受到可怕的复杂体系结构的干扰。具体而言,我们将基本结构及其组合转换为Volterra卷积的形式。结果表明,大多数卷积神经网络可以转换为Volterra卷积的形式,在该形式中,转换后的代理内核保留了原始网络的特征。分析这些代理内核可能会给原始网络提供宝贵的见解。基于此设置,我们提出了近似零订单和订单的代理内核的方法,并验证了结果的正确性和有效性。
translated by 谷歌翻译
本文着重于在二维空间中建立深层卷积神经网络(CNN)的$ l^2 $近似属性。该分析基于具有较大空间大小和多通道的卷积内核的分解定理。鉴于分解结果,relu激活函数的性质和通道的特定结构,通过显示其与一层隐藏层的Relu神经网络(NNS)的联系,获得了具有经典结构的深层relu CNN的通用近似定理。此外,基于这些网络之间的连接,可以为具有重新NET,PER-ACT RESNET和MGNET体系结构的一个版本的神经网络获得近似属性。
translated by 谷歌翻译
这项调查的目的是介绍对深神经网络的近似特性的解释性回顾。具体而言,我们旨在了解深神经网络如何以及为什么要优于其他经典线性和非线性近似方法。这项调查包括三章。在第1章中,我们回顾了深层网络及其组成非线性结构的关键思想和概念。我们通过在解决回归和分类问题时将其作为优化问题来形式化神经网络问题。我们简要讨论用于解决优化问题的随机梯度下降算法以及用于解决优化问题的后传播公式,并解决了与神经网络性能相关的一些问题,包括选择激活功能,成本功能,过度适应问题和正则化。在第2章中,我们将重点转移到神经网络的近似理论上。我们首先介绍多项式近似中的密度概念,尤其是研究实现连续函数的Stone-WeierStrass定理。然后,在线性近似的框架内,我们回顾了馈电网络的密度和收敛速率的一些经典结果,然后在近似Sobolev函数中进行有关深网络复杂性的最新发展。在第3章中,利用非线性近似理论,我们进一步详细介绍了深度和近似网络与其他经典非线性近似方法相比的近似优势。
translated by 谷歌翻译
在过去的十年中,神经网络在各种各样的反问题中取得了显着的成功,从医学成像到地震分析等学科中的采用促进了他们的收养。但是,这种反问题的高维度同时使当前理论预测,网络应在问题的维度上成倍扩展,无法解释为什么在这些设置中使用的看似很小的网络在实践中也可以正常工作。为了减少理论和实践之间的差距,在本文中提供了一种在具有低复杂性结构的高维置的神经网络近似Lipschitz函数所需的复杂性的一般方法。该方法基于这样的观察,即在\ mathbb {r}^in \ mathbb {r}^{d \ times d} $ in \ mathbb {a} \ in \ mathbb {a} \ in \ mathcal集合$ \ mathcal {S } \ subset \ mathbb {r}^d $中的低维立方体$ [ - m,m]^d $意味着对于任何Lipschitz函数$ f:\ mathcal {s} \ to \ mathbb {r}^p $ ,存在lipschitz函数$ g:[-m,m]^d \ to \ mathbb {r}^p $,使得$ g(\ mathbf {a} \ mathbf {x})= f(\ mathbf {x })$用于所有$ \ mathbf {x} \ in \ mathcal {s} $。因此,如果一个人具有一个近似$ g的神经网络:[-m,m]^d \ to \ mathbb {r}^p $,则可以添加一个图层,以实现JL嵌入$ \ mathbf {A a} $要获得一个近似于$ f的神经网络:\ mathcal {s} \ to \ mathbb {r}^p $。通过将JL嵌入结果与神经网络近似Lipschitz函数的近似结果配对,然后获得了一个结果,这些结果绑定了神经网络所需的复杂性,以近似Lipschitz在高尺寸集合上的功能。最终结果是一个一般的理论框架,然后可以用它来更好地解释比当前理论所允许的更广泛的逆问题中较小的网络的经验成功。
translated by 谷歌翻译
A Transformer-based deep direct sampling method is proposed for a class of boundary value inverse problems. A real-time reconstruction is achieved by evaluating the learned inverse operator between carefully designed data and the reconstructed images. An effort is made to give a specific example to a fundamental question: whether and how one can benefit from the theoretical structure of a mathematical problem to develop task-oriented and structure-conforming deep neural networks? Specifically, inspired by direct sampling methods for inverse problems, the 1D boundary data in different frequencies are preprocessed by a partial differential equation-based feature map to yield 2D harmonic extensions as different input channels. Then, by introducing learnable non-local kernels, the direct sampling is recast to a modified attention mechanism. The proposed method is then applied to electrical impedance tomography, a well-known severely ill-posed nonlinear inverse problem. The new method achieves superior accuracy over its predecessors and contemporary operator learners, as well as shows robustness with respect to noise. This research shall strengthen the insights that the attention mechanism, despite being invented for natural language processing tasks, offers great flexibility to be modified in conformity with the a priori mathematical knowledge, which ultimately leads to the design of more physics-compatible neural architectures.
translated by 谷歌翻译
在本文中,我们在关注最先进的变压器中应用自我关注,这是第一次需要与部分微分方程相关的数据驱动的操作员学习问题。努力放在一起解释启发式,提高注意机制的功效。通过在希尔伯特空间中采用操作员近似理论,首次证明了Softmax归一化在缩放的点产品中的关注中足够但没有必要。在没有软墨中的情况下,可以证明线性化变换器变型的近似容量与Petrov-Galerkin投影层 - 明智相当,并且估计是相对于序列长度的独立性。提出了一种模仿Petrov-Galerkin投影的新层归一化方案,以允许缩放通过注意层传播,这有助于模型在具有非通信数据的操作员学习任务中实现显着准确性。最后,我们展示了三个操作员学习实验,包括粘虫汉堡方程,接口达西流程,以及逆接口系数识别问题。新提出的简单关注的算子学习者Galerkin变压器,在Softmax归一化的同行中,培训成本和评估准确性都显示出显着的改进。
translated by 谷歌翻译
Deep neural networks provide unprecedented performance gains in many real world problems in signal and image processing. Despite these gains, future development and practical deployment of deep networks is hindered by their blackbox nature, i.e., lack of interpretability, and by the need for very large training sets. An emerging technique called algorithm unrolling or unfolding offers promise in eliminating these issues by providing a concrete and systematic connection between iterative algorithms that are used widely in signal processing and deep neural networks. Unrolling methods were first proposed to develop fast neural network approximations for sparse coding. More recently, this direction has attracted enormous attention and is rapidly growing both in theoretic investigations and practical applications. The growing popularity of unrolled deep networks is due in part to their potential in developing efficient, high-performance and yet interpretable network architectures from reasonable size training sets. In this article, we review algorithm unrolling for signal and image processing. We extensively cover popular techniques for algorithm unrolling in various domains of signal and image processing including imaging, vision and recognition, and speech processing. By reviewing previous works, we reveal the connections between iterative algorithms and neural networks and present recent theoretical results. Finally, we provide a discussion on current limitations of unrolling and suggest possible future research directions.
translated by 谷歌翻译
图表表示学习有许多现实世界应用,从超级分辨率的成像,3D计算机视觉到药物重新扫描,蛋白质分类,社会网络分析。图表数据的足够表示对于图形结构数据的统计或机器学习模型的学习性能至关重要。在本文中,我们提出了一种用于图形数据的新型多尺度表示系统,称为抽取帧的图形数据,其在图表上形成了本地化的紧密框架。抽取的帧系统允许在粗粒链上存储图形数据表示,并在每个比例的多个尺度处处理图形数据,数据存储在子图中。基于此,我们通过建设性数据驱动滤波器组建立用于在多分辨率下分解和重建图数据的抽取G-Framewelet变换。图形帧构建基于基于链的正交基础,支持快速图傅里叶变换。由此,我们为抽取的G-Frameword变换或FGT提供了一种快速算法,该算法具有线性计算复杂度O(n),用于尺寸N的图表。用数值示例验证抽取的帧谱和FGT的理论,用于随机图形。现实世界应用的效果是展示的,包括用于交通网络的多分辨率分析,以及图形分类任务的图形神经网络。
translated by 谷歌翻译
Deep neural networks (DNNs) recently emerged as a promising tool for analyzing and solving complex differential equations arising in science and engineering applications. Alternative to traditional numerical schemes, learning-based solvers utilize the representation power of DNNs to approximate the input-output relations in an automated manner. However, the lack of physics-in-the-loop often makes it difficult to construct a neural network solver that simultaneously achieves high accuracy, low computational burden, and interpretability. In this work, focusing on a class of evolutionary PDEs characterized by having decomposable operators, we show that the classical ``operator splitting'' numerical scheme of solving these equations can be exploited to design neural network architectures. This gives rise to a learning-based PDE solver, which we name Deep Operator-Splitting Network (DOSnet). Such non-black-box network design is constructed from the physical rules and operators governing the underlying dynamics contains learnable parameters, and is thus more flexible than the standard operator splitting scheme. Once trained, it enables the fast solution of the same type of PDEs. To validate the special structure inside DOSnet, we take the linear PDEs as the benchmark and give the mathematical explanation for the weight behavior. Furthermore, to demonstrate the advantages of our new AI-enhanced PDE solver, we train and validate it on several types of operator-decomposable differential equations. We also apply DOSnet to nonlinear Schr\"odinger equations (NLSE) which have important applications in the signal processing for modern optical fiber transmission systems, and experimental results show that our model has better accuracy and lower computational complexity than numerical schemes and the baseline DNNs.
translated by 谷歌翻译
These notes were compiled as lecture notes for a course developed and taught at the University of the Southern California. They should be accessible to a typical engineering graduate student with a strong background in Applied Mathematics. The main objective of these notes is to introduce a student who is familiar with concepts in linear algebra and partial differential equations to select topics in deep learning. These lecture notes exploit the strong connections between deep learning algorithms and the more conventional techniques of computational physics to achieve two goals. First, they use concepts from computational physics to develop an understanding of deep learning algorithms. Not surprisingly, many concepts in deep learning can be connected to similar concepts in computational physics, and one can utilize this connection to better understand these algorithms. Second, several novel deep learning algorithms can be used to solve challenging problems in computational physics. Thus, they offer someone who is interested in modeling a physical phenomena with a complementary set of tools.
translated by 谷歌翻译
我们提出了一个小说嵌入字段\ emph {pref}作为促进神经信号建模和重建任务的紧凑表示。基于纯的多层感知器(MLP)神经技术偏向低频信号,并依赖于深层或傅立叶编码以避免丢失细节。取而代之的是,基于傅立叶嵌入空间的相拟合公式,PREF采用了紧凑且物理上解释的编码场。我们进行全面的实验,以证明PERF比最新的空间嵌入技术的优势。然后,我们使用近似的逆傅里叶变换方案以及新型的parseval正常器来开发高效的频率学习框架。广泛的实验表明,我们的高效和紧凑的基于频率的神经信号处理技术与2D图像完成,3D SDF表面回归和5D辐射场现场重建相同,甚至比最新的。
translated by 谷歌翻译
Computational units in artificial neural networks follow a simplified model of biological neurons. In the biological model, the output signal of a neuron runs down the axon, splits following the many branches at its end, and passes identically to all the downward neurons of the network. Each of the downward neurons will use their copy of this signal as one of many inputs dendrites, integrate them all and fire an output, if above some threshold. In the artificial neural network, this translates to the fact that the nonlinear filtering of the signal is performed in the upward neuron, meaning that in practice the same activation is shared between all the downward neurons that use that signal as their input. Dendrites thus play a passive role. We propose a slightly more complex model for the biological neuron, where dendrites play an active role: the activation in the output of the upward neuron becomes optional, and instead the signals going through each dendrite undergo independent nonlinear filterings, before the linear combination. We implement this new model into a ReLU computational unit and discuss its biological plausibility. We compare this new computational unit with the standard one and describe it from a geometrical point of view. We provide a Keras implementation of this unit into fully connected and convolutional layers and estimate their FLOPs and weights change. We then use these layers in ResNet architectures on CIFAR-10, CIFAR-100, Imagenette, and Imagewoof, obtaining performance improvements over standard ResNets up to 1.73%. Finally, we prove a universal representation theorem for continuous functions on compact sets and show that this new unit has more representational power than its standard counterpart.
translated by 谷歌翻译
部分微分方程(PDE)参见在科学和工程中的广泛使用,以将物理过程的模拟描述为标量和向量场随着时间的推移相互作用和协调。由于其标准解决方案方法的计算昂贵性质,神经PDE代理已成为加速这些模拟的积极研究主题。但是,当前的方法并未明确考虑不同字段及其内部组件之间的关系,这些关系通常是相关的。查看此类相关场的时间演变通过多活动场的镜头,使我们能够克服这些局限性。多胎场由标量,矢量以及高阶组成部分组成,例如双分数和三分分射线。 Clifford代数可以描述它们的代数特性,例如乘法,加法和其他算术操作。据我们所知,本文介绍了此类多人表示的首次使用以及Clifford的卷积和Clifford Fourier在深度学习的背景下的转换。由此产生的Clifford神经层普遍适用,并将在流体动力学,天气预报和一般物理系统的建模领域中直接使用。我们通过经验评估克利福德神经层的好处,通过在二维Navier-Stokes和天气建模任务以及三维Maxwell方程式上取代其Clifford对应物中常见的神经PDE代理中的卷积和傅立叶操作。克利福德神经层始终提高测试神经PDE代理的概括能力。
translated by 谷歌翻译
实施深层神经网络来学习参数部分微分方程(PDE)的解决方案图比使用许多常规数值方法更有效。但是,对这种方法进行了有限的理论分析。在这项研究中,我们研究了深层二次单元(requ)神经网络的表达能力,以近似参数PDE的溶液图。拟议的方法是由G. Kutyniok,P。Petersen,M。Raslan和R. Schneider(Gitta Kutyniok,Philipp Petersen,Mones Raslan和Reinhold Schneider。深层神经网络和参数PDES的理论分析)的最新重要工作激励的。 。建设性近似,第1-53、2021页,该第1-53、2021页,它使用深层的线性单元(relu)神经网络来求解参数PDE。与先前建立的复杂性$ \ MATHCAL {O} \ left(d^3 \ log_ {2}}^{q}(1/ \ epsilon)\ right)$用于relu神经网络,我们得出了上限的上限$ \ MATHCAL {o} \ left(d^3 \ log_ {2}^{q} \ log_ {2}(1/ \ epsilon)\ right)$)$ right Requ Neural网络的大小,以实现精度$ \ epsilon> 0 $,其中$ d $是代表解决方案的减少基础的维度。我们的方法充分利用了解决方案歧管的固有低维度和深层reque neural网络的更好近似性能。进行数值实验以验证我们的理论结果。
translated by 谷歌翻译