自我监督最近在其新的图形学习前沿飙升。它有助于对下游任务有利的图表表示;但其成功可以遵守手工造工或经常昂贵的试验和错误的域名知识。即使是其最先进的代表性,图形对比学习(GraphCl),也不完全没有这些需求,因为GraphCL使用由Ad-hoc手册选择图数据增强的预制物反映。我们的工作旨在通过回答以下问题来推进GraphCl:如何代表图形增强视图的空间?在该空间之前可以依赖哪些原则?可以建立哪些框架,以便在对比学习中学习之前的串联?因此,我们在增强集中的预制离散延伸到图形生成器的参数空间之前的学习连续,假设图形Priors本身类似于图像歧管的概念,可以通过数据生成来学习。此外,为了形成由于先前的可读性而没有折叠的琐碎解决方案的对比视图,我们利用了信息最小化(Infomin)和信息瓶颈(InfoBN)的两个原则来规范学习的前提。最终,对比学习,Infomin和InfoBn有机融合到双级优化的一个框架中。我们的原则和自动化方法已被证明对艺术最先进的图形自我监督方法(包括Graphcl)的竞争力,包括小图形的基准;并且在大型图表上显示了更好的普遍性,而不诉诸人类专业知识或下游验证。我们的代码在https://github.com/shen-lab/graphcl_automated公开发布。
translated by 谷歌翻译
Generalizable, transferrable, and robust representation learning on graph-structured data remains a challenge for current graph neural networks (GNNs). Unlike what has been developed for convolutional neural networks (CNNs) for image data, self-supervised learning and pre-training are less explored for GNNs. In this paper, we propose a graph contrastive learning (GraphCL) framework for learning unsupervised representations of graph data. We first design four types of graph augmentations to incorporate various priors. We then systematically study the impact of various combinations of graph augmentations on multiple datasets, in four different settings: semi-supervised, unsupervised, and transfer learning as well as adversarial attacks. The results show that, even without tuning augmentation extents nor using sophisticated GNN architectures, our GraphCL framework can produce graph representations of similar or better generalizability, transferrability, and robustness compared to state-of-the-art methods. We also investigate the impact of parameterized graph augmentation extents and patterns, and observe further performance gains in preliminary experiments. Our codes are available at: https://github.com/Shen-Lab/GraphCL.
translated by 谷歌翻译
图形对比学习(GCL)已成为学习图形无监督表示的有效工具。关键思想是通过数据扩展最大化每个图的两个增强视图之间的一致性。现有的GCL模型主要集中在给定情况下的所有图表上应用\ textit {相同的增强策略}。但是,实际图通常不是单态,而是各种本质的抽象。即使在相同的情况下(例如,大分子和在线社区),不同的图形可能需要各种增强来执行有效的GCL。因此,盲目地增强所有图表而不考虑其个人特征可能会破坏GCL艺术的表现。 {a} u Mentigation(GPA),通过允许每个图选择自己的合适的增强操作来推进常规GCL。本质上,GPA根据其拓扑属性和节点属性通过可学习的增强选择器为每个图定制了量身定制的增强策略,该策略是插件模块,可以通过端到端的下游GCL型号有效地训练。来自不同类型和域的11个基准图的广泛实验证明了GPA与最先进的竞争对手的优势。此外,通过可视化不同类型的数据集中学习的增强分布,我们表明GPA可以有效地识别最合适的数据集每个图的增强基于其特征。
translated by 谷歌翻译
由于现实世界图形/网络数据中的广泛标签稀缺问题,因此,自我监督的图形神经网络(GNN)非常需要。曲线图对比度学习(GCL),通过训练GNN以其不同的增强形式最大化相同图表之间的表示之间的对应关系,即使在不使用标签的情况下也可以产生稳健和可转移的GNN。然而,GNN由传统的GCL培训经常冒险捕获冗余图形特征,因此可能是脆弱的,并在下游任务中提供子对比。在这里,我们提出了一种新的原理,称为普通的普通GCL(AD-GCL),其使GNN能够通过优化GCL中使用的对抗性图形增强策略来避免在训练期间捕获冗余信息。我们将AD-GCL与理论解释和设计基于可训练的边缘滴加图的实际实例化。我们通过与最先进的GCL方法进行了实验验证了AD-GCL,并在无监督,6 \%$ 14 \%$ 6 \%$ 14 \%$ 6 \%$ 6 \%$ 3 \%$ 3 \%$达到半监督总体学习设置,具有18个不同的基准数据集,用于分子属性回归和分类和社交网络分类。
translated by 谷歌翻译
对比学习已被广​​泛应用于图形表示学习,其中观测发生器在产生有效的对比样本方面发挥着重要作用。大多数现有的对比学习方法采用预定义的视图生成方法,例如节点滴或边缘扰动,这通常不能适应输入数据或保持原始语义结构。为了解决这个问题,我们提出了一份名为自动化图形对比学习(AutoGCL)的小说框架。具体而言,AutoGCL采用一组由自动增强策略协调的一组学习图形视图生成器,其中每个图形视图生成器都会学习输入调节的图形的概率分布。虽然AutoGCL中的图形视图发生器在生成每个对比样本中保留原始图的最代表性结构,但自动增强学会在整个对比学习程序中介绍适当的增强差异的政策。此外,AutoGCL采用联合培训策略,以培训学习的视图发生器,图形编码器和分类器以端到端的方式,导致拓扑异质性,在产生对比样本时的语义相似性。关于半监督学习,无监督学习和转移学习的广泛实验展示了我们在图形对比学习中的最先进的自动支持者框架的优越性。此外,可视化结果进一步证实,与现有的视图生成方法相比,可学习的视图发生器可以提供更紧凑和语义有意义的对比样本。
translated by 谷歌翻译
关于图表的深度学习最近吸引了重要的兴趣。然而,大多数作品都侧重于(半)监督学习,导致缺点包括重标签依赖,普遍性差和弱势稳健性。为了解决这些问题,通过良好设计的借口任务在不依赖于手动标签的情况下提取信息知识的自我监督学习(SSL)已成为图形数据的有希望和趋势的学习范例。与计算机视觉和自然语言处理等其他域的SSL不同,图表上的SSL具有独家背景,设计理念和分类。在图表的伞下自我监督学习,我们对采用图表数据采用SSL技术的现有方法及时及全面的审查。我们构建一个统一的框架,数学上正式地规范图表SSL的范例。根据借口任务的目标,我们将这些方法分为四类:基于生成的,基于辅助性的,基于对比的和混合方法。我们进一步描述了曲线图SSL在各种研究领域的应用,并总结了绘图SSL的常用数据集,评估基准,性能比较和开源代码。最后,我们讨论了该研究领域的剩余挑战和潜在的未来方向。
translated by 谷歌翻译
图级表示在各种现实世界中至关重要,例如预测分子的特性。但是实际上,精确的图表注释通常非常昂贵且耗时。为了解决这个问题,图形对比学习构造实例歧视任务,将正面对(同一图的增强对)汇总在一起,并将负面对(不同图的增强对)推开,以进行无监督的表示。但是,由于为了查询,其负面因素是从所有图中均匀抽样的,因此现有方法遭受关键采样偏置问题的损失,即,否定物可能与查询具有相同的语义结构,从而导致性能降解。为了减轻这种采样偏见问题,在本文中,我们提出了一种典型的图形对比度学习(PGCL)方法。具体而言,PGCL通过将语义相似的图形群群归为同一组的群集数据的基础语义结构,并同时鼓励聚类的一致性,以实现同一图的不同增强。然后给出查询,它通过从与查询群集不同的群集中绘制图形进行负采样,从而确保查询及其阴性样本之间的语义差异。此外,对于查询,PGCL根据其原型(集群质心)和查询原型之间的距离进一步重新重新重新重新重新享受其负样本,从而使那些具有中等原型距离的负面因素具有相对较大的重量。事实证明,这种重新加权策略比统一抽样更有效。各种图基准的实验结果证明了我们的PGCL比最新方法的优势。代码可在https://github.com/ha-lins/pgcl上公开获取。
translated by 谷歌翻译
Graph machine learning has been extensively studied in both academia and industry. Although booming with a vast number of emerging methods and techniques, most of the literature is built on the in-distribution hypothesis, i.e., testing and training graph data are identically distributed. However, this in-distribution hypothesis can hardly be satisfied in many real-world graph scenarios where the model performance substantially degrades when there exist distribution shifts between testing and training graph data. To solve this critical problem, out-of-distribution (OOD) generalization on graphs, which goes beyond the in-distribution hypothesis, has made great progress and attracted ever-increasing attention from the research community. In this paper, we comprehensively survey OOD generalization on graphs and present a detailed review of recent advances in this area. First, we provide a formal problem definition of OOD generalization on graphs. Second, we categorize existing methods into three classes from conceptually different perspectives, i.e., data, model, and learning strategy, based on their positions in the graph machine learning pipeline, followed by detailed discussions for each category. We also review the theories related to OOD generalization on graphs and introduce the commonly used graph datasets for thorough evaluations. Finally, we share our insights on future research directions. This paper is the first systematic and comprehensive review of OOD generalization on graphs, to the best of our knowledge.
translated by 谷歌翻译
无监督的图形表示学习是图形数据的非琐碎主题。在结构化数据的无监督代表学习中对比学习和自我监督学习的成功激发了图表上的类似尝试。使用对比损耗的当前无监督的图形表示学习和预培训主要基于手工增强图数据之间的对比度。但是,由于不可预测的不变性,图数据增强仍然没有很好地探索。在本文中,我们提出了一种新颖的协作图形神经网络对比学习框架(CGCL),它使用多个图形编码器来观察图形。不同视图观察的特征充当了图形编码器之间对比学习的图表增强,避免了任何扰动以保证不变性。 CGCL能够处理图形级和节点级表示学习。广泛的实验表明CGCL在无监督的图表表示学习中的优势以及图形表示学习的手工数据增强组合的非必要性。
translated by 谷歌翻译
领先的图对比度学习(GCL)方法在两个时尚中执行图形增强:(1)随机损坏锚图,这可能会导致语义信息的丢失,或(2)使用域知识维护显着特征,这破坏了对概括的概括其他域。从不变性看GCL时,我们认为高性能的增强应保留有关实例歧视的锚图的显着语义。为此,我们将GCL与不变的理由发现联系起来,并提出了一个新的框架,即理由吸引图形对比度学习(RGCL)。具体而言,没有监督信号,RGCL使用基本原理生成器来揭示有关图形歧视的显着特征作为理由,然后为对比度学习创建理由吸引的视图。这种理由意识到的预训练方案赋予了骨干模型具有强大的表示能力,从而进一步促进了下游任务的微调。在MNIST-SUPERPIXEL和MUTAG数据集上,对发现的理由的视觉检查展示了基本原理生成器成功捕获了显着特征(即区分图中的语义节点)。在生化分子和社交网络基准数据集上,RGCL的最新性能证明了理由意识到对比度学习的有效性。我们的代码可在https://github.com/lsh0520/rgcl上找到。
translated by 谷歌翻译
自我监督学习(SSL)是一种通过利用数据中固有的监督来学习数据表示的方法。这种学习方法是药物领域的焦点,由于耗时且昂贵的实验,缺乏带注释的数据。使用巨大未标记数据的SSL显示出在分子属性预测方面表现出色的性能,但存在一些问题。 (1)现有的SSL模型是大规模的;在计算资源不足的情况下实现SSL有限制。 (2)在大多数情况下,它们不利用3D结构信息进行分子表示学习。药物的活性与药物分子的结构密切相关。但是,大多数当前模型不使用3D信息或部分使用它。 (3)以前对分子进行对比学习的模型使用置换原子和键的增强。因此,具有不同特征的分子可以在相同的阳性样品中。我们提出了一个新颖的对比学习框架,用于分子属性预测的小规模3D图对比度学习(3DGCL),以解决上述问题。 3DGCL通过不改变药物语义的预训练过程来反映分子的结构来学习分子表示。仅使用1,128个样本用于预训练数据和100万个模型参数,我们在四个回归基准数据集中实现了最先进或可比性的性能。广泛的实验表明,基于化学知识的3D结构信息对于用于财产预测的分子表示学习至关重要。
translated by 谷歌翻译
分子表示学习有助于多个下游任务,例如分子性质预测和药物设计。为了适当地代表分子,图形对比学习是一个有前途的范式,因为它利用自我监督信号并没有人类注释要求。但是,先前的作品未能将基本域名知识纳入图表语义,因此忽略了具有共同属性的原子之间的相关性,但不通过键连接连接。为了解决这些问题,我们构建化学元素知识图(KG),总结元素之间的微观关联,并提出了一种用于分子代表学习的新颖知识增强的对比学习(KCL)框架。 KCL框架由三个模块组成。第一个模块,知识引导的图形增强,基于化学元素kg增强原始分子图。第二模块,知识意识的图形表示,利用用于原始分子图的公共曲线图编码器和通过神经网络(KMPNN)的知识感知消息来提取分子表示来编码增强分子图中的复杂信息。最终模块是一种对比目标,在那里我们在分子图的这两个视图之间最大化协议。广泛的实验表明,KCL获得了八个分子数据集上的最先进基线的优异性能。可视化实验适当地解释了在增强分子图中从原子和属性中了解的KCL。我们的代码和数据可用于补充材料。
translated by 谷歌翻译
图形神经网络是一种强大的深度学习工具,用于建模图形结构化数据,在众多图形学习任务上表现出了出色的性能。为了解决深图学习中的数据噪声和数据稀缺性问题,最近有关图形数据的研究已加剧。但是,常规数据增强方法几乎无法处理具有多模式性的非欧几里得空间中定义的图形结构化数据。在这项调查中,我们正式提出了图数据扩展的问题,并进一步审查了代表性技术及其在不同深度学习问题中的应用。具体而言,我们首先提出了图形数据扩展技术的分类法,然后通过根据增强信息方式对相关工作进行分类,从而提供结构化的审查。此外,我们总结了以数据为中心的深图学习中两个代表性问题中图数据扩展的应用:(1)可靠的图形学习,重点是增强输入图的实用性以及通过图数据增强的模型容量; (2)低资源图学习,其针对通过图数据扩大标记的训练数据量表的目标。对于每个问题,我们还提供层次结构问题分类法,并审查与图数据增强相关的现有文献。最后,我们指出了有希望的研究方向和未来研究的挑战。
translated by 谷歌翻译
Inspired by the impressive success of contrastive learning (CL), a variety of graph augmentation strategies have been employed to learn node representations in a self-supervised manner. Existing methods construct the contrastive samples by adding perturbations to the graph structure or node attributes. Although impressive results are achieved, it is rather blind to the wealth of prior information assumed: with the increase of the perturbation degree applied on the original graph, 1) the similarity between the original graph and the generated augmented graph gradually decreases; 2) the discrimination between all nodes within each augmented view gradually increases. In this paper, we argue that both such prior information can be incorporated (differently) into the contrastive learning paradigm following our general ranking framework. In particular, we first interpret CL as a special case of learning to rank (L2R), which inspires us to leverage the ranking order among positive augmented views. Meanwhile, we introduce a self-ranking paradigm to ensure that the discriminative information among different nodes can be maintained and also be less altered to the perturbations of different degrees. Experiment results on various benchmark datasets verify the effectiveness of our algorithm compared with the supervised and unsupervised models.
translated by 谷歌翻译
在本文中,我们研究了在非全粒图上进行节点表示学习的自我监督学习的问题。现有的自我监督学习方法通​​常假定该图是同质的,其中链接的节点通常属于同一类或具有相似的特征。但是,这种同质性的假设在现实图表中并不总是正确的。我们通过为图神经网络开发脱钩的自我监督学习(DSSL)框架来解决这个问题。 DSSL模仿了节点的生成过程和语义结构的潜在变量建模的链接,该过程将不同邻域之间的不同基础语义解散到自我监督的节点学习过程中。我们的DSSL框架对编码器不可知,不需要预制的增强,因此对不同的图表灵活。为了通过潜在变量有效地优化框架,我们得出了自我监督目标的较低范围的证据,并开发了具有变异推理的可扩展培训算法。我们提供理论分析,以证明DSSL享有更好的下游性能。与竞争性的自我监督学习基线相比,对各种类图基准的广泛实验表明,我们提出的框架可以显着取得更好的性能。
translated by 谷歌翻译
图对比度学习已被证明是图形神经网络(GNN)预训练的有效任务。但是,一个关键问题可能会严重阻碍现有作品中的代表权:当前方法创建的积极实例通常会错过图表的关键信息,甚至会错过非法实例(例如分子生成中的非化学意识图)。为了解决此问题,我们建议直接从训练集中的现有图中选择正图实例,该实例最终保持与目标图的合法性和相似性。我们的选择基于某些特定于域的成对相似性测量以及从层次图编码图中的相似性关系的采样。此外,我们开发了一种自适应节点级预训练方法,以动态掩盖节点在图中均匀分布。我们对来自各个域的$ 13 $图形分类和节点分类基准数据集进行了广泛的实验。结果表明,通过我们的策略预先培训的GNN模型可以胜过那些训练有素的从划痕模型以及通过现有方法获得的变体。
translated by 谷歌翻译
图表分类具有生物信息学,社会科学,自动假新闻检测,Web文档分类等中的应用程序。在许多实践方案中,包括网络级应用程序,其中标签稀缺或难以获得,无人监督的学习是一种自然范式,但它交易表现。最近,对比学习(CL)使得无监督的计算机视觉模型能够竞争对抗监督。分析Visual CL框架的理论和实证工作发现,利用大型数据集和域名感知增强对于框架成功至关重要。有趣的是,图表CL框架通常会在使用较小数据的顺序的同时报告高性能,并且使用可能损坏图形的底层属性的域名增强(例如,节点或边缘丢弃,功能捕获)。通过这些差异的激励,我们寻求确定:(i)为什么现有的图形Cl框架尽管增加了增强和有限的数据; (ii)是否遵守Visual CL原理可以提高图形分类任务的性能。通过广泛的分析,我们识别图形数据增强和评估协议的缺陷实践,这些协议通常用于图形CL文献中,并提出了未来的研究和应用的改进的实践和理智检查。我们表明,在小型基准数据集上,图形神经网络的归纳偏差可以显着补偿现有框架的局限性。在采用相对较大的图形分类任务的研究中,我们发现常用的域名忽视增强的表现不佳,同时遵守Visual Cl中的原则可以显着提高性能。例如,在基于图形的文档分类中,可以用于更好的Web搜索,我们显示任务相关的增强提高了20%的准确性。
translated by 谷歌翻译
分子特性预测是与关键现实影响的深度学习的增长最快的应用之一。包括3D分子结构作为学习模型的输入可以提高它们对许多分子任务的性能。但是,此信息是不可行的,可以以几个现实世界应用程序所需的规模计算。我们建议预先训练模型,以推理仅给予其仅为2D分子图的分子的几何形状。使用来自自我监督学习的方法,我们最大化3D汇总向量和图形神经网络(GNN)的表示之间的相互信息,使得它们包含潜在的3D信息。在具有未知几何形状的分子上进行微调期间,GNN仍然产生隐式3D信息,并可以使用它来改善下游任务。我们表明3D预训练为广泛的性质提供了显着的改进,例如八个量子力学性能的22%的平均MAE。此外,可以在不同分子空间中的数据集之间有效地传送所学习的表示。
translated by 谷歌翻译
图形对比度学习(GCL)很普遍,可以解决图形学习任务中的监督短缺问题。已经提出了许多最近使用手动设计的增强技术的GCL方法,旨在在原始图上实施具有挑战性的增强,以产生强大的表示。尽管他们中的许多人都取得了显着的表现,但现有的GCL方法仍然难以提高模型鲁棒性而不会冒失去与任务相关的信息的风险,因为它们忽略了增强引起的潜在因素的事实可能与原始图相吻合,因此更难更难将与任务相关的信息与无关信息区分开。因此,学到的代表性要么是脆弱的,要么不耗尽。鉴于此,我们介绍了对抗性的跨视图图形对比度学习(ACDGCL),该学习遵循信息瓶颈原理以从图形数据中学习最小而充分的表示形式。具体而言,我们提出的模型分别引起增强不变和增强依赖性因素。除了传统的对比损失外,还保证了不同对比度观点的表示的一致性和充分性外,我们还引入了跨视图重建机制来追求代表性删除。此外,对抗视图被添加为对比度损失的第三种观点,以增强模型鲁棒性。我们从经验上证明,我们提出的模型在多个基准数据集上优于图形分类任务上的最先进。
translated by 谷歌翻译
人工智能(AI)在过去十年中一直在改变药物发现的实践。各种AI技术已在广泛的应用中使用,例如虚拟筛选和药物设计。在本调查中,我们首先概述了药物发现,并讨论了相关的应用,可以减少到两个主要任务,即分子性质预测和分子产生。然后,我们讨论常见的数据资源,分子表示和基准平台。此外,为了总结AI在药物发现中的进展情况,我们介绍了在调查的论文中包括模型架构和学习范式的相关AI技术。我们预计本调查将作为有兴趣在人工智能和药物发现界面工作的研究人员的指南。我们还提供了GitHub存储库(HTTPS:///github.com/dengjianyuan/survey_survey_au_drug_discovery),其中包含文件和代码,如适用,作为定期更新的学习资源。
translated by 谷歌翻译