交叉的布兰斯提供了一种有用的机制,以构建具有各种所需特性的串理论的粒子物理模型。这种模型的景观可能是巨大的,并且朝着最具现象学上有趣的地区导航可能具有挑战性。机器学习技术可用于有效地构建大量一致和现象学上所需的模型。在这项工作中,我们将在遗传算法方面进行遗传算法找到一致的相交D-Brane模型的问题,这模仿自然选择以统称地扩展到最佳解决方案。对于四维$ {\ cal n} = 1 $超对对称类型的IIa Orientifold与交叉D6-Branes,我们证明$ \ Mathcal {O}(10 ^ 6)$唯一,可以轻松构建完全一致的型号, ,通过明智地选择搜索环境和超参数,$ \ mathcal {o}(30 \%)$的发现模型包含所需的标准模型计量组因子。具有相当大的样本使我们能够利用和没有限制具有标准模型计因子的术语围绕Brane模型的一些初步横向统计。
translated by 谷歌翻译
分布算法(EDA)是优化算法,在搜索空间上学习分布,可以轻松地采样良好的解决方案。大多数EDA的关键参数是样本量(人口尺寸)。如果人口规模太小,则概率模型的更新基于很少的样本,从而导致遗传漂移的不期望效应。人口太大避免了遗传漂移,但减慢了这一过程。基于对种群规模如何导致遗传漂移的最新定量分析,我们为EDA设计了一种智能的正式机制。通过停止运行,当遗传漂移的风险很高时,它会自动以良好的参数状态运行EDA。通过数学运行时分析,我们证明了此智能总结方案的一般性能保证。这特别表明,在许多情况下,已知最佳(特定问题)参数值,重新启动方案会自动找到这些,从而导致渐近最佳性能。我们还进行了广泛的实验分析。在四个经典的基准问题上,我们清楚地观察了人口规模对性能的关键影响,并且我们发现智能重点方案会导致具有最佳参数值可获得的性能。我们的结果还表明,先前基于理论的最佳人口规模的建议远非最佳群体,从而导致表现明显不如通过智能重点方案获得的表现。我们还对文献,最大切割问题和两部分问题的两个组合优化问题进行了PBIL(跨熵算法)进行实验。同样,我们观察到,智能设施的机制比文献中建议的人口规模更高,从而导致表现更好。
translated by 谷歌翻译
聚类算法的全面基准是困难的两个关键因素:(i)〜这种无监督的学习方法的独特数学定义和(ii)〜某些聚类算法采用的生成模型或群集标准之间的依赖性的依赖性内部集群验证。因此,对严格基准测试的最佳做法没有达成共识,以及是否有可能在给定申请的背景之外。在这里,我们认为合成数据集必须继续在群集算法的评估中发挥重要作用,但这需要构建适当地涵盖影响聚类算法性能的各种属性集的基准。通过我们的框架,我们展示了重要的角色进化算法,以支持灵活的这种基准,允许简单的修改和扩展。我们说明了我们框架的两种可能用途:(i)〜基准数据的演变与一组手派生属性和(ii)〜生成梳理给定对算法之间的性能差异的数据集。我们的作品对设计集群基准的设计具有足够挑战广泛算法的集群基准,并进一步了解特定方法的优势和弱点。
translated by 谷歌翻译
非主导的分类遗传算法II(NSGA-II)是现实应用中最强烈使用的多目标进化算法(MOEA)。然而,与几个通过数学手段分析的几个简单的MOES相反,到目前为止,NSGA-II也不存在这种研究。在这项工作中,我们表明,数学运行时分析也可用于NSGA-II。结果,我们证明,由于持续因素大于帕累托前方大小的人口大小,具有两个经典突变算子的NSGA-II和三种不同的选择父母的方式满足与Semo和GSEMO相同的渐近运行时保证基本ineminmax和Lotz基准函数的算法。但是,如果人口大小仅等于帕累托前面的大小,那么NSGA-II就无法有效地计算完整的帕累托前部(对于指数迭代,人口总是错过帕累托前部的恒定分数) 。我们的实验证实了上述研究结果。
translated by 谷歌翻译
本文描述了进化算法的固有力量。该功率取决于遗传编码的计算特性。有了一些编码,两个父母与简单的跨界操作员重新组合可以从儿童表型的任意分布中取样。此类编码在本文中称为\ emph {表达式编码}。通用函数近似值,包括遗传编程和神经网络的流行进化底物,可用于构建表达性编码。值得注意的是,这种方法不必仅应用于表型是一个函数的域:即使优化静态结构(例如二进制向量),也可以达到表现力。这样简单的设置使理论上表征表达性编码是可能的:在各种测试问题上,表达性编码被证明可以实现超过标准直接编码的超级指数收敛的速度。结论是,在诸如遗传编程,神经进化,遗传算法和理论之类的进化计算领域中,表达式编码可以成为理解和实现全部进化力量的关键。
translated by 谷歌翻译
我们继续研究遗传算法(GA)在组合优化问题上,候选解决方案需要满足平衡性约束。已经观察到,临时交叉和突变操作员授予的搜索空间大小的减小通常不会转化为GA性能的实质性改善。尽管怀疑平衡的代表可能会产生更不规则的健身景观,但仍然没有明确的解释,尽管该景观可能会更难以使GA融合到全球最佳距离。在本文中,我们通过将局部搜索步骤添加到具有平衡运算符的GA,并使用它来进化高度非线性平衡的布尔功能,从而调查此问题。特别是,我们围绕两个研究问题组织了实验,即如果本地搜索(1)提高了GA的收敛速度,并且(2)降低了人口多样性。令人惊讶的是,尽管我们的结果肯定地回答了第一个问题,但他们还表明,添加本地搜索实际上\ emph {增加}人口中个人之间的多样性。我们将这些发现与有关布尔功能问题的健身景观分析的最新结果联系起来。
translated by 谷歌翻译
第五个成功规则是控制进化算法参数的最着名和最广泛接受的技术之一。虽然它经常在字面意义上应用,但一个共同的解释将五分之一的成功规则视为一系列基于成功的更新规则,这些规则由更新强度$ F $和成功率决定。在这方面,我们分析了(1 + 1)进化算法在领导者上的性能取决于这两个超参数。我们的主要结果表明,为小型更新优势获得最佳性能$ f = 1 + o(1)$和成功率$ 1 / e $。我们还证明,除了下订单术语之外,通过该参数设置获得的运行时间,通过最佳的健身依赖率实现的相同。我们对(1 + 1)进化算法的重新采样变体显示了类似的结果,该算法强制实施每次迭代至少一位。
translated by 谷歌翻译
三体系系统和逆平面潜力都对重整化群体限制循环的研究具有特殊意义。在这项工作中,我们追求探索性方法,并解决两体相互作用导致在低能量下三体系统中限制周期的问题,而不会对散射长度施加任何限制。为此,我们训练变形AutoEncoders的增强集合,不仅提供了严重的维度减少,而且还允许产生进一步的合成电位,这是一个重要的先决条件,以便有效地搜索低维潜在空间中的极限循环。我们通过将精英遗传算法应用于综合电位群体来实现,这最大限度地减少了特殊定义的极限循环损失。由此产生的最合适的人表明,逆平面电位是唯一的二体电位,最小化这一限制周期损失独立于高锰。
translated by 谷歌翻译
在进化计算中使用非豁免主义时的一个希望是放弃当前最佳解决方案的能力,艾滋病们离开本地最佳效果。为了提高我们对这种机制的理解,我们对基本的非精英进化算法(EA),$(\ mu,\ lambda)$ ea进行严格的运行时分析,在最基本的基准函数上,具有本地最佳的基本基准函数跳跃功能。我们证明,对于参数和问题的所有合理值,$(\ mu,\ lambda)$ ~ea的预期运行时间除了下订单条款之外,至少与其Elitist对应的预期运行时间,$(\ mu + \ lambda)$〜ea(我们对跳转功能进行第一个运行时分析以允许此比较)。因此,$(\ mu,\ lambda)$ ~ea将本地最优方式留给劣质解决方案的能力不会导致运行时优势。我们补充了这个下限的下限,即对于参数的广泛范围,与我们的下限不同,与下顺序不同。这是一个在多模态问题上的非精英算法的第一个运行时结果,除了下订单术语。
translated by 谷歌翻译
遗传算法(GA)是基于遗传学和自然选择原理的基于搜索的优化技术。我们提出了一种算法,该算法通过量子退火器的输入来增强经典GA。与经典GA一样,该算法通过根据其适应性繁殖一系列可能的解决方案来工作。但是,个体的人口是由量子退火器上的连续耦合来定义的,然后通过量子退火产生代表尝试溶液的相应表型。这将定向突变的一种形式引入算法中,可以以各种方式增强其性能。两种关键的增强功能来自具有从父母的适应性(所谓的裙带关系)和退火耦合的连续耦合,从而使整个人群受到最合适的人(所谓的量子量子化)的影响。我们发现我们的算法在几个简单问题上比经典GA更强大。
translated by 谷歌翻译
最近,已经进行了NSGA-II的第一个数学运行时分析,这是最常见的多目标进化算法(Zheng,Liu,Doerr(AAAI 2022))。继续这一研究方向,我们证明了NSGA-II在使用交叉时,渐近渐近地测试了OneJumpZeroJump基准测试。这是NSGA-II首次证明这种交叉的优势。我们的论点可以转移到单目标优化。然后,他们证明,跨界可以以不同的方式加速$(\ MU+1)$遗传算法,并且比以前更为明显。我们的实验证实了交叉的附加值,并表明观察到的加速度甚至比我们的证明所能保证的要大。
translated by 谷歌翻译
为了更好地了解进化算法(EAS)如何应对恒定健身的平台的理论理解,我们提出了$ N $ -dimensional高原$ _K $函数作为天然基准,分析$(1 + 1)$的不同变体EA优化它。高原$ _K $函数在最佳的半径k $的半径k $的第二个最佳健身高原。作为进化算法,我们使用任意无偏的突变算子以$(1 + 1)$ EA。用$ \ alpha $ \ alpha $ \ alpha的随机数量在这个运算符的应用中,并假设$ \ pr [\ alpha = 1] $至少具有一些小的子常值,我们展示了所有常量的令人惊讶的结果$ k \ ge 2 $,运行时$ t $遵循靠近几何一个的分布,其中成功概率等于翻转的概率为1 $和$ k $ bits除以高原的大小。因此,预期的运行时是该号码的倒数,因此只取决于翻转1美元和$ k $位之间的概率,而不是突变运算符的其他特征。我们的结果也意味着这里标准位突变的最佳突变率约为k /(en)$。我们的主要分析工具是在搜索点空间和汉明级空间上的马尔可夫链的综合分析,这是一种对其他高原问题也有用的方法。
translated by 谷歌翻译
一般计划的合成已成为遗传编程(GP)和人工智能的重要应用领域。代码构建遗传编程(CBGP)是最近引入的一般程序合成的GP方法,它利用反射和一级规格支持可能使用任意数据类型,多态性和从现有代码库中汲取的功能的程序的演变。但是,尚未报告正式描述和CBGP的彻底基准测试。在这项工作中,我们使用类型理论的算法对CBGP的方法进行形式化。特别是,我们表明,功能性编程语言和Hindley-Milner类型系统可用于使用原始CBGP纸中抽象描述的过程来发展类型安全程序。此外,与其他当代GP程序合成方法相比,我们对CBGP的该功能变体的搜索性能进行了全面分析。
translated by 谷歌翻译
传统的统计技术或元启发式学很难解决大多数现实世界的优化问题。主要困难与存在相当数量的局部Optima有关,这可能导致优化过程的过早收敛性。为了解决这个问题,我们提出了一种新型的启发式方法,用于构建原始功能的平滑替代模型。替代功能更容易优化,但保持原始坚固的健身景观的基本属性:全球最佳的位置。为了创建这样的替代模型,我们考虑通过自我调整健身函数增强的线性遗传编程方法。所提出的称为GP-FST-PSO替代模型的算法在搜索全局最优值和原始基准函数的视觉近似(在二维情况下)的视觉近似都可以达到令人满意的结果。
translated by 谷歌翻译
4月20日至22日,在马德里(西班牙)举行的EVO* 2022会议上提交了末期摘要。这些论文介绍了正在进行的研究和初步结果,这些结果研究了对不同问题的不同方法(主要是进化计算)的应用,其中大多数是现实世界中的方法。
translated by 谷歌翻译
离散基因监管网络(GRNS)在鲁棒性和模块化的研究中起着至关重要的作用。评估GRNS稳健性的常见方法是测量它们调节一组扰动基因激活图案回到其未受干扰的形式的能力。通常,通过收集通过基因激活模式的预定分布产生的随机样品来获得扰动。这种采样方法引入了随机性,否定动态。这种动态施加在已经复杂的健身景观之上。因此,在使用采样的情况下,重要的是要理解哪种效果来自健身景观的结构,并且从施加的动力学产生。健身功能的随机性也会导致重现性和实验后分析中的困难。通过考虑基因活性模式的完全分布,我们制定确定性分布适应性评估,以避免适应性评估中的随机性。这种健身评估有助于重复性。其确定性允许我们在健身上确定理论界,从而确定算法是否达到了全局最优。它使我们能够将问题域与嘈杂的健身评估的影响区分开来,从而解决〜\ CiteT {espinosa2010Specialization}问题领域的行为中的两个剩余异常。我们还揭示了解决方案GRNS的一些属性,使它们具有稳健和模块化,导致对问题域的性质更深入了解。我们通过讨论潜在的方向来模拟和理解较大,更复杂的域中的模块化的出现,这是产生更有用的模块化解决方案的关键,并理解生物系统中的模块化的难以。
translated by 谷歌翻译
合奏学习在机器学习方面取得了成功,比其他学习方法具有重大优势。袋装是一种突出的合奏学习方法,它创建了被称为袋子的数据子组,该数据被单独的机器学习方法(例如决策树)培训。随机森林是学习过程中具有其他功能的袋装的重要例子。 \ textColor {black} {当单个学习者具有较高的偏见时,包装的限制是汇总预测中的高偏置(模型不足)。}进化算法已突出用于优化问题,并且也用于机器学习。进化算法是无梯度的方法,具有多种候选解决方案,可维持创建新解决方案的多样性。在传统的包装合奏学习中,制作了一次袋子,而在培训示例方面,内容是在学习过程中固定的。在我们的论文中,我们提出了进化装袋的合奏学习,我们利用进化算法来发展袋子的内容,以通过迭代袋中提供多样性来增强合奏。结果表明,在某些约束下,我们的进化合奏装袋方法优于几个基准数据集的常规合奏方法(包装和随机森林)。进化装袋可以固有地维持一套不同的行李,而无需牺牲任何数据。
translated by 谷歌翻译
在当前的嘈杂中间尺度量子(NISQ)时代,量子机学习正在成为基于程序门的量子计算机的主要范式。在量子机学习中,对量子电路的门进行了参数化,并且参数是根据数据和电路输出的测量来通过经典优化来调整的。参数化的量子电路(PQC)可以有效地解决组合优化问题,实施概率生成模型并进行推理(分类和回归)。该专着为具有概率和线性代数背景的工程师的观众提供了量子机学习的独立介绍。它首先描述了描述量子操作和测量所必需的必要背景,概念和工具。然后,它涵盖了参数化的量子电路,变异量子本质层以及无监督和监督的量子机学习公式。
translated by 谷歌翻译
准确的真实量子系统模型对于调查其行为很重要,但难以弥补经验。在这里,我们报告了一种算法 - 量子模型学习代理(QMLA) - 逆向工程师Hamiltonian对目标系统的描述。我们在许多模拟实验中测试QMLA的性能,展示了候选人汉密尔顿模型设计的几种机制,同时娱乐了许多关于治疗研究系统的物理相互作用的性质的许多假设。当提供有限的先验信息和控制实验设置时,显示QMLA在大多数实例中识别真实模型。我们的协议可以探索ising,Heisenberg和Hubbard系列的模型并行,可靠地识别最能描述系统动态的家庭。我们通过纳入遗传算法制定新的假设模型,展示在大型模型空间上运行的QMLA。该特征传播到下一代的模型的选择基于ELO评级方案启发的客观函数,通常用于评估竞争对手,例如国际象棋和足球。在所有情况下,我们的协议查找与真实模型相比展出$ f_1 $ -score $ \ ge 0.88 $的型号,并且精确地识别了72%的案件中的真实模型,同时探索超过250,000美元的潜在模型的空间。通过测试目标系统实际发生的相互作用,QMLA是一种可行的工具,用于探索基本物理和量子器件的表征和校准。
translated by 谷歌翻译
分类是数据挖掘和机器学习领域中研究最多的任务之一,并且已经提出了文献中的许多作品来解决分类问题,以解决多个知识领域,例如医学,生物学,安全性和遥感。由于没有单个分类器可以为各种应用程序取得最佳结果,因此,一个很好的选择是采用分类器融合策略。分类器融合方法成功的关键点是属于合奏的分类器之间多样性和准确性的结合。借助文献中可用的大量分类模型,一个挑战是选择最终分类系统的最合适的分类器,从而产生了分类器选择策略的需求。我们通过基于一个称为CIF-E(分类器,初始化,健身函数和进化算法)的四步协议的分类器选择和融合的框架来解决这一点。我们按照提出的CIF-E协议实施和评估24种各种集合方法,并能够找到最准确的方法。在文献中最佳方法和许多其他基线中,还进行了比较分析。该实验表明,基于单变量分布算法(UMDA)的拟议进化方法可以超越许多著名的UCI数据集中最新的文献方法。
translated by 谷歌翻译