我们继续研究遗传算法(GA)在组合优化问题上,候选解决方案需要满足平衡性约束。已经观察到,临时交叉和突变操作员授予的搜索空间大小的减小通常不会转化为GA性能的实质性改善。尽管怀疑平衡的代表可能会产生更不规则的健身景观,但仍然没有明确的解释,尽管该景观可能会更难以使GA融合到全球最佳距离。在本文中,我们通过将局部搜索步骤添加到具有平衡运算符的GA,并使用它来进化高度非线性平衡的布尔功能,从而调查此问题。特别是,我们围绕两个研究问题组织了实验,即如果本地搜索(1)提高了GA的收敛速度,并且(2)降低了人口多样性。令人惊讶的是,尽管我们的结果肯定地回答了第一个问题,但他们还表明,添加本地搜索实际上\ emph {增加}人口中个人之间的多样性。我们将这些发现与有关布尔功能问题的健身景观分析的最新结果联系起来。
translated by 谷歌翻译
我们考虑通过删除指定的线路从更大的一个构造从更大的阵列(OA)构建二进制正交阵列(OA)的优化问题。特别地,我们开发一种遗传算法(GA),其中底层染色体是指定从起始OA取消的线路的恒定重量二进制字符串。然后通过平衡的交叉和突变算子来演化这种染色体以保持它们中的数量。健身功能通过测量从比起始的OA的约束量测量它们的距离来评估从这些染色体获得的基质。我们通过将初始OA制定作为基本奇偶校验阵列的几个块的随机置换来执行提出的遗传算法的初步实验验证,从而保证了最佳解决方案的存在。
translated by 谷歌翻译
组合设计提供了一个有趣的优化问题来源。其中,给出了在电力线通信,闪存和块密码中的应用程序的应用特别感兴趣。本文通过开发迭代方法来解决进化算法(EA)的排列码的设计。从单个随机排列开始,通过使用基于置换的ea来逐渐增加满足最小距离约束的新排列。我们调查了针对四种不同的健身功能的方法,针对不同级别的细节的最小距离要求,并有两种不同的关于代码扩展和修剪的政策。我们比较我们的EA方法实现的结果,即简单的随机搜索,答案既没有用问题大小衡量。
translated by 谷歌翻译
过去已经表明,与解决多模式问题生成器的解决实例相比,多座丘陵策略与标准遗传算法相比有利。我们扩展了这项工作,并验证遗传算法中多样性保存技术的利用是否改变了比较结果。在两种情况下,我们这样做:(1)​​目标是找到全局最佳距离时,(2)当目标是找到所有Optima时。进行了数学分析,用于多设山丘算法,并通过实证研究进行了经验研究,以求解多模式问题生成器的实例,其中包括山丘策略以及遗传算法的数量,并使用遗传算法进行了元素。尽管小甲基元素改善了遗传算法的性能,但它仍然不如这类问题上的多尽山关闭策略。还提出了一种理想化的细分策略,并认为它的性能应接近任何进化算法在此类问题上可以做到的。
translated by 谷歌翻译
S-boxes are an important primitive that help cryptographic algorithms to be resilient against various attacks. The resilience against specific attacks can be connected with a certain property of an S-box, and the better the property value, the more secure the algorithm. One example of such a property is called boomerang uniformity, which helps to be resilient against boomerang attacks. How to construct S-boxes with good boomerang uniformity is not always clear. There are algebraic techniques that can result in good boomerang uniformity, but the results are still rare. In this work, we explore the evolution of S-boxes with good values of boomerang uniformity. We consider three different encodings and five S-box sizes. For sizes $4\times 4$ and $5\times 5$, we manage to obtain optimal solutions. For $6\times 6$, we obtain optimal boomerang uniformity for the non-APN function. For larger sizes, the results indicate the problem to be very difficult (even more difficult than evolving differential uniformity, which can be considered a well-researched problem).
translated by 谷歌翻译
传统的统计技术或元启发式学很难解决大多数现实世界的优化问题。主要困难与存在相当数量的局部Optima有关,这可能导致优化过程的过早收敛性。为了解决这个问题,我们提出了一种新型的启发式方法,用于构建原始功能的平滑替代模型。替代功能更容易优化,但保持原始坚固的健身景观的基本属性:全球最佳的位置。为了创建这样的替代模型,我们考虑通过自我调整健身函数增强的线性遗传编程方法。所提出的称为GP-FST-PSO替代模型的算法在搜索全局最优值和原始基准函数的视觉近似(在二维情况下)的视觉近似都可以达到令人满意的结果。
translated by 谷歌翻译
最近,已经进行了NSGA-II的第一个数学运行时分析,这是最常见的多目标进化算法(Zheng,Liu,Doerr(AAAI 2022))。继续这一研究方向,我们证明了NSGA-II在使用交叉时,渐近渐近地测试了OneJumpZeroJump基准测试。这是NSGA-II首次证明这种交叉的优势。我们的论点可以转移到单目标优化。然后,他们证明,跨界可以以不同的方式加速$(\ MU+1)$遗传算法,并且比以前更为明显。我们的实验证实了交叉的附加值,并表明观察到的加速度甚至比我们的证明所能保证的要大。
translated by 谷歌翻译
在本文中,我们提出了一个简单的策略,可以通过平均估计精英子人群来估计收敛点。基于这个想法,我们得出了两种方法,它们是普通的平均策略和加权平均策略。我们还设计了一个具有估计收敛点的平均值的高斯采样算子,具有一定的标准偏差。该操作员与传统的差分进化算法(DE)结合使用,以加速收敛。数值实验表明,我们的建议可以在CEC2013套件上的28个低维测试功能的大多数功能上加速DE,并且可以轻松扩展我们的建议与其他基于人群的进化算法结合使用,并简单地修改。
translated by 谷歌翻译
$(1 +(\ lambda,\ lambda))$遗传算法是一种较年轻的进化算法,试图从劣质解决方案中获利。关于单峰的健身功能的严格运行时分析表明它确实可以比古典进化算法更快,但在这些简单的问题上,收益只有中等。在这项工作中,我们在多模式问题类中进行了该算法的第一个运行时分析,跳跃功能基准。我们展示了使用正确的参数,\ ollga优化任何跳跃尺寸$ 2 \ Le K \ Le N / 4 $的任何跳跃功能,在预期的时间$ O(n ^ {(k + 1)/ 2} e ^ {o( k)}} k ^ { - k / 2}),它显着且已经持续了〜$ k $优于基于标准的突变的算法与他们的$ \ theta(n ^ k)$运行时与它们的标准交叉的算法$ \ tilde {o}(n ^ {k-1})$运行时保证。对于离开局部跳跃功能的局部最佳的孤立问题,我们确定了导致$(n / k)^ {k / 2} e ^ {\ theta(k)} $的运行时间的最佳参数。这表明有关如何设置\ ollga的参数的一般建议,这可能会缓解该算法的进一步使用。
translated by 谷歌翻译
本文描述了进化算法的固有力量。该功率取决于遗传编码的计算特性。有了一些编码,两个父母与简单的跨界操作员重新组合可以从儿童表型的任意分布中取样。此类编码在本文中称为\ emph {表达式编码}。通用函数近似值,包括遗传编程和神经网络的流行进化底物,可用于构建表达性编码。值得注意的是,这种方法不必仅应用于表型是一个函数的域:即使优化静态结构(例如二进制向量),也可以达到表现力。这样简单的设置使理论上表征表达性编码是可能的:在各种测试问题上,表达性编码被证明可以实现超过标准直接编码的超级指数收敛的速度。结论是,在诸如遗传编程,神经进化,遗传算法和理论之类的进化计算领域中,表达式编码可以成为理解和实现全部进化力量的关键。
translated by 谷歌翻译
健身分配过程将候选解决方案的特征(例如客观值)转换为标量适合度,然后是选择的基础。在频率健身分配(FFA)下,对应于客观值的适应度是其遇到频率,并且可能会最小化。 FFA创建了不偏向更好的解决方案的算法,并且在目标函数值的所有双突发下都是不变的。我们调查FFA对两种理论启发,最先进的EA,贪婪(2 + 1)GA和自调节(1 +λ,λ)的性能的影响。 FFA对他们难以提高他们的表现。我们经验地发现一种基于FFA的算法可以解决本研究中的所有基于理论的基准问题,包括多项式时间中的陷阱,跳跃和强化。我们提出了两种混合方法,该方法使用直接和基于FFA的优化,并发现它们表现良好。所有基于FFA的算法在满足性问题上也比所有纯算法变体更好。
translated by 谷歌翻译
在进化计算中使用非豁免主义时的一个希望是放弃当前最佳解决方案的能力,艾滋病们离开本地最佳效果。为了提高我们对这种机制的理解,我们对基本的非精英进化算法(EA),$(\ mu,\ lambda)$ ea进行严格的运行时分析,在最基本的基准函数上,具有本地最佳的基本基准函数跳跃功能。我们证明,对于参数和问题的所有合理值,$(\ mu,\ lambda)$ ~ea的预期运行时间除了下订单条款之外,至少与其Elitist对应的预期运行时间,$(\ mu + \ lambda)$〜ea(我们对跳转功能进行第一个运行时分析以允许此比较)。因此,$(\ mu,\ lambda)$ ~ea将本地最优方式留给劣质解决方案的能力不会导致运行时优势。我们补充了这个下限的下限,即对于参数的广泛范围,与我们的下限不同,与下顺序不同。这是一个在多模态问题上的非精英算法的第一个运行时结果,除了下订单术语。
translated by 谷歌翻译
分类是数据挖掘和机器学习领域中研究最多的任务之一,并且已经提出了文献中的许多作品来解决分类问题,以解决多个知识领域,例如医学,生物学,安全性和遥感。由于没有单个分类器可以为各种应用程序取得最佳结果,因此,一个很好的选择是采用分类器融合策略。分类器融合方法成功的关键点是属于合奏的分类器之间多样性和准确性的结合。借助文献中可用的大量分类模型,一个挑战是选择最终分类系统的最合适的分类器,从而产生了分类器选择策略的需求。我们通过基于一个称为CIF-E(分类器,初始化,健身函数和进化算法)的四步协议的分类器选择和融合的框架来解决这一点。我们按照提出的CIF-E协议实施和评估24种各种集合方法,并能够找到最准确的方法。在文献中最佳方法和许多其他基线中,还进行了比较分析。该实验表明,基于单变量分布算法(UMDA)的拟议进化方法可以超越许多著名的UCI数据集中最新的文献方法。
translated by 谷歌翻译
基准套件提供了对进化算法解决问题能力的有用度量,但是组成问题通常太复杂了,无法清洁算法的优势和劣势。在这里,我们介绍了基准套件档案(``进化运行中的选择方案的诊断概述''),以实证分析有关剥削和探索重要方面的选择方案。利用从根本上是攀岩,但我们考虑两种情况:纯剥削,可以独立优化表示形式中的每个位置,并且受到限制的利用,在该位置之间,由于位置之间的相互作用,向上进展更加有限。当优化路径不太清楚时,需要探索;我们认为能够遵循多个独立的爬山途径和跨健身山谷的能力。这些场景的每种组合都会产生独特的适应性景观,有助于表征与给定选择方案相关的进化动力学。我们分析了六个流行的选择方案。锦标赛的选择和截断选择都在剥削指标方面表现出色,但在需要探索时表现不佳;相反,新颖的搜索在探索方面表现出色,但未能利用梯度。在克服欺骗时,健身共享表现良好,但在所有其他诊断方面都很差。非主导的分类是维持由居住在多个Optima居住的个体组成的不同人群的最佳选择,但努力有效利用梯度。词汇酶选择平衡搜索空间探索而不牺牲剥削,通常在诊断方面表现良好。我们的工作证明了诊断对快速建立对选择方案特征的直观理解的价值,然后可以将其用于改进或开发新的选择方法。
translated by 谷歌翻译
大多数进化算法具有多个参数,它们的值大大影响性能。由于参数的常复相互作用,将这些值设置为特定问题(参数调整)是一个具有挑战性的任务。当最佳参数值在算法运行期间最佳参数值发生显着变化时,此任务变得更加复杂。然后是必要的动态参数选择(参数控制)。在这项工作中,我们提出了一个懒惰但有效的解决方案,即从一个适当缩放的幂律分布中随机地选择所有参数值(在那里这是有意义的)。为了展示这种方法的有效性,我们使用以这种方式选择的所有三个参数执行$(1 +(\ lambda,\ lambda))$遗传算法的运行时分析。我们展示该算法一方面可以模仿像$(1 + 1)$ EA这样的简单山羊,给出了onemax,领导者或最小生成树等问题的相同渐近运行时。另一方面,该算法对跳跃功能也非常有效,其中最佳静态参数与优化简单问题所需的静态参数非常不同。我们证明了具有可比性的性能保证,有时比静态参数所知的最佳性能更好。我们通过严格的实证研究来补充我们的理论结果,证实了渐近运行时期结果的建议。
translated by 谷歌翻译
分布算法(EDA)是优化算法,在搜索空间上学习分布,可以轻松地采样良好的解决方案。大多数EDA的关键参数是样本量(人口尺寸)。如果人口规模太小,则概率模型的更新基于很少的样本,从而导致遗传漂移的不期望效应。人口太大避免了遗传漂移,但减慢了这一过程。基于对种群规模如何导致遗传漂移的最新定量分析,我们为EDA设计了一种智能的正式机制。通过停止运行,当遗传漂移的风险很高时,它会自动以良好的参数状态运行EDA。通过数学运行时分析,我们证明了此智能总结方案的一般性能保证。这特别表明,在许多情况下,已知最佳(特定问题)参数值,重新启动方案会自动找到这些,从而导致渐近最佳性能。我们还进行了广泛的实验分析。在四个经典的基准问题上,我们清楚地观察了人口规模对性能的关键影响,并且我们发现智能重点方案会导致具有最佳参数值可获得的性能。我们的结果还表明,先前基于理论的最佳人口规模的建议远非最佳群体,从而导致表现明显不如通过智能重点方案获得的表现。我们还对文献,最大切割问题和两部分问题的两个组合优化问题进行了PBIL(跨熵算法)进行实验。同样,我们观察到,智能设施的机制比文献中建议的人口规模更高,从而导致表现更好。
translated by 谷歌翻译
跳跃功能是随机搜索启发式理论中的{最多研究的非单峰基准,特别是进化算法(EA)。他们对我们的理解显着改善了EASE逃离当地最优的理解。然而,他们的特殊结构 - 离开本地最佳的结构只能直接跳到全球最优 - 引发代表性这种结果的问题。出于这个原因,我们提出了一个扩展的$ \ textsc {jump} _ {k,\ delta} $ jump函数,其中包含宽度$ \ delta $的低适合度vally以距离$ k $从全局最佳v $开始。我们证明了几个以前的结果延伸到这一更普遍的类:对于所有{$ k \ le \ frac {n ^ {1/3}} {\ ln {n}} $}和$ \ delta <k $,最佳$(1 + 1)$〜EA的突变率是$ \ FRAC {\ delta} $,并且快速$(1 + 1)$〜EA运行比经典$(1 + 1)$更快〜ea在$ \ delta $中的一个超级指数。但是,我们还观察到一些已知结果不概括:随机本地搜索算法具有停滞检测,其比$ \ textsc的$ k $ k $ k $ k $ k $ k $ k $ x $ \ textsc {跳} _K $,在某些$ \ textsc {jump} _ {k,\ delta} $实例上以$ n $的因子多项式慢。计算地,新类允许使用更宽的健身谷的实验,特别是当它们远离全球最佳时。
translated by 谷歌翻译
为了更好地了解进化算法(EAS)如何应对恒定健身的平台的理论理解,我们提出了$ N $ -dimensional高原$ _K $函数作为天然基准,分析$(1 + 1)$的不同变体EA优化它。高原$ _K $函数在最佳的半径k $的半径k $的第二个最佳健身高原。作为进化算法,我们使用任意无偏的突变算子以$(1 + 1)$ EA。用$ \ alpha $ \ alpha $ \ alpha的随机数量在这个运算符的应用中,并假设$ \ pr [\ alpha = 1] $至少具有一些小的子常值,我们展示了所有常量的令人惊讶的结果$ k \ ge 2 $,运行时$ t $遵循靠近几何一个的分布,其中成功概率等于翻转的概率为1 $和$ k $ bits除以高原的大小。因此,预期的运行时是该号码的倒数,因此只取决于翻转1美元和$ k $位之间的概率,而不是突变运算符的其他特征。我们的结果也意味着这里标准位突变的最佳突变率约为k /(en)$。我们的主要分析工具是在搜索点空间和汉明级空间上的马尔可夫链的综合分析,这是一种对其他高原问题也有用的方法。
translated by 谷歌翻译
遗传算法具有独特的属性,当应用于黑匣子优化时很有用。使用选择,交叉和突变算子,可以获得候选溶液,而无需计算梯度。在这项工作中,我们研究了从遗传算法的选择机理中使用量子增强的算子获得的结果。我们的方法将选择过程描述为最小化的二元二次模型,我们使用该模型编码适合度和人群成员之间的距离,我们利用量子退火系统来为选择机制采样低能解决方案。我们在各种黑盒目标函数(包括ONEMAX函数)以及来自IOH-Profiler库中的函数进行黑盒优化的函数基准对这些量子增强算法基准针对经典算法进行基准测试。与OneMax功能上的经典相比,我们观察到平均世代相传的性能增长,以收敛到量子增强的精英选择运算符。我们还发现,具有非专业选择的量子增强选择算子在IOHProfiler库中具有适应性扰动的功能上的基准优于基准。此外,我们发现,在精英选择的情况下,量子增强的操作员在不同程度的虚拟变量和中立性方面的函数上优于经典基准。
translated by 谷歌翻译