新催化剂的发现是计算化学的重要主题之一,因为它有可能加速采用可再生能源。最近开发的深度学习方法,例如图形神经网络(GNNS)开放的新机会,以显着扩大新型高性能催化剂的范围。然而,由于模棱两可的连接方案和节点和边缘的众多嵌入,特定晶体结构的图表并不是一项简单的任务。在这里,我们提出了GNN的嵌入改进,该改进已通过Voronoi Tesselation修改,并能够预测开放催化剂项目数据集中催化系统的能量。通过Voronoi镶嵌计算图的富集,并将相应的触点固体角度和类型(直接或间接)视为边缘的特征,而Voronoi体积用作节点特征。辅助方法是通过内在的原子特性(电负性,周期和组位置)富集节点表示。提出的修改使我们能够改善原始模型的平均绝对误差,最终误差等于“开放催化剂项目数据集”上每个原子的651 MeV,并且在金属中数据集上的每个原子6 MeV。同样,通过考虑其他数据集,我们表明,明智的数据选择可以将误差降低到高于每个原子阈值20 MEV的值的值。
translated by 谷歌翻译
计算催化和机器学习社区在开发用于催化剂发现和设计的机器学习模型方面取得了长足的进步。然而,跨越催化的化学空间的一般机器学习潜力仍然无法触及。一个重大障碍是在广泛的材料中获得访问培训数据的访问。缺乏数据的一类重要材料是氧化物,它抑制模型无法更广泛地研究氧气进化反应和氧化物电催化。为了解决这个问题,我们开发了开放的催化剂2022(OC22)数据集,包括62,521个密度功能理论(DFT)放松(〜9,884,504个单点计算),遍及一系列氧化物材料,覆盖范围,覆盖率和吸附物( *H, *o, *o, *o, *o, *o, * n, *c, *ooh, *oh, *oh2, *o2, *co)。我们定义广义任务,以预测催化过程中适用的总系统能量,发展几个图神经网络的基线性能(Schnet,Dimenet ++,Forcenet,Spinconv,Painn,Painn,Gemnet-DT,Gemnet-DT,Gemnet-OC),并提供预先定义的数据集分割以建立明确的基准,以实现未来的努力。对于所有任务,我们研究组合数据集是否会带来更好的结果,即使它们包含不同的材料或吸附物。具体而言,我们在Open Catalyst 2020(OC20)数据集和OC22上共同训练模型,或OC22上的微调OC20型号。在最一般的任务中,Gemnet-OC看到通过微调来提高了约32%的能量预测,通过联合训练的力预测提高了约9%。令人惊讶的是,OC20和较小的OC22数据集的联合培训也将OC20的总能量预测提高了约19%。数据集和基线模型是开源的,公众排行榜将遵循,以鼓励社区的持续发展,以了解总能源任务和数据。
translated by 谷歌翻译
这项工作介绍了神经性等因素的外部潜力(NEQUIP),E(3) - 用于学习分子动力学模拟的AB-INITIO计算的用于学习网状体电位的e(3)的神经网络方法。虽然大多数当代对称的模型使用不变的卷曲,但仅在标量上采取行动,Nequip采用E(3) - 几何张量的相互作用,举起Quivariant卷曲,导致了更多的信息丰富和忠实的原子环境代表。该方法在挑战和多样化的分子和材料集中实现了最先进的准确性,同时表现出显着的数据效率。 Nequip优先于现有型号,最多三个数量级的培训数据,挑战深度神经网络需要大量培训套装。该方法的高数据效率允许使用高阶量子化学水平的理论作为参考的精确潜力构建,并且在长时间尺度上实现高保真分子动力学模拟。
translated by 谷歌翻译
The accurate prediction of physicochemical properties of chemical compounds in mixtures (such as the activity coefficient at infinite dilution $\gamma_{ij}^\infty$) is essential for developing novel and more sustainable chemical processes. In this work, we analyze the performance of previously-proposed GNN-based models for the prediction of $\gamma_{ij}^\infty$, and compare them with several mechanistic models in a series of 9 isothermal studies. Moreover, we develop the Gibbs-Helmholtz Graph Neural Network (GH-GNN) model for predicting $\ln \gamma_{ij}^\infty$ of molecular systems at different temperatures. Our method combines the simplicity of a Gibbs-Helmholtz-derived expression with a series of graph neural networks that incorporate explicit molecular and intermolecular descriptors for capturing dispersion and hydrogen bonding effects. We have trained this model using experimentally determined $\ln \gamma_{ij}^\infty$ data of 40,219 binary-systems involving 1032 solutes and 866 solvents, overall showing superior performance compared to the popular UNIFAC-Dortmund model. We analyze the performance of GH-GNN for continuous and discrete inter/extrapolation and give indications for the model's applicability domain and expected accuracy. In general, GH-GNN is able to produce accurate predictions for extrapolated binary-systems if at least 25 systems with the same combination of solute-solvent chemical classes are contained in the training set and a similarity indicator above 0.35 is also present. This model and its applicability domain recommendations have been made open-source at https://github.com/edgarsmdn/GH-GNN.
translated by 谷歌翻译
电子密度$ \ rho(\ vec {r})$是用密度泛函理论(dft)计算地面能量的基本变量。除了总能量之外,$ \ rho(\ vec {r})$分布和$ \ rho(\ vec {r})$的功能通常用于捕获电子规模以功能材料和分子中的关键物理化学现象。方法提供对$ \ rho(\ vec {r})的可紊乱系统,其具有少量计算成本的复杂无序系统可以是对材料相位空间的加快探索朝向具有更好功能的新材料的逆设计的游戏更换者。我们为预测$ \ rho(\ vec {r})$。该模型基于成本图形神经网络,并且在作为消息传递图的一部分的特殊查询点顶点上预测了电子密度,但仅接收消息。该模型在多个数据组中进行测试,分子(QM9),液体乙烯碳酸酯电解质(EC)和Lixniymnzco(1-Y-Z)O 2锂离子电池阴极(NMC)。对于QM9分子,所提出的模型的准确性超过了从DFT获得的$ \ Rho(\ vec {r})$中的典型变异性,以不同的交换相关功能,并显示超出最先进的准确性。混合氧化物(NMC)和电解质(EC)数据集更好的精度甚至更好。线性缩放模型同时探测成千上万点的能力允许计算$ \ Rho(\ vec {r})$的大型复杂系统,比DFT快于允许筛选无序的功能材料。
translated by 谷歌翻译
近年来,分子模拟数据集的出现是大数量级,更多样化的阶。这些新数据集在复杂性的四个方面有很大差异:1。化学多样性(不同元素的数量),2。系统大小(每个样品原子数),3。数据集大小(数据样本数)和4.域移动(培训和测试集的相似性)。尽管存在这些较大的差异,但在狭窄和狭窄的数据集上的基准仍然是证明分子模拟的图形神经网络(GNN)进展的主要方法,这可能是由于较便宜的训练计算要求所致。这就提出了一个问题 - GNN在小和狭窄的数据集上的进展是否转化为这些更复杂的数据集?这项工作通过首先根据大型开放催化剂2020(OC20)数据集开发Gemnet-OC模型来研究这个问题。 Gemnet-OC的表现优于OC20上的先前最新ART,同时将训练时间减少10倍。然后,我们比较了18个模型组件和超参数选择对多个数据集的性能的影响。我们发现,根据用于做出模型选择的数据集,所得模型将大不相同。为了隔离这种差异的来源,我们研究了OC20数据集的六个子集,这些子集分别测试了上述四个数据集方面的每个数据集。我们发现,OC-2M子集的结果与完整的OC20数据集良好相关,同时训练得更便宜。我们的发现挑战了仅在小型数据集上开发GNN的常见做法,但突出了通过中等尺寸的代表性数据集(例如OC-2M)以及Gemnet-oc等高效模型来实现快速开发周期和可推广结果的方法。我们的代码和预估计的模型权重是开源的。
translated by 谷歌翻译
精确预测物理性质对于发现和设计新材料至关重要。机器学习技术引起了材料科学界的重大关注,以实现大规模筛选的潜力。图表卷积神经网络(GCNN)是最成功的机器学习方法之一,因为它在描述3D结构数据时的灵活性和有效性。大多数现有的GCNN模型集中在拓扑结构上,但过度简化了三维几何结构。然而,在材料科学中,原子的3D空间分布对于确定原子状态和内部力是至关重要的。本文提出了一种具有新型卷积机制的自适应GCNN,其同时在三维空间中同时模拟所有邻的原子之间的原子相互作用。我们将拟议模型应用于预测材料特性的两个明显挑战的问题。首先是亨利在金属 - 有机框架(MOF)中的气体吸附恒定,这是众所周知的,因为它对原子配置的高敏感性。第二种是固态晶体材料中的离子电导率,这是由于少数可用于训练的标记数据而困难。新模型优于两个数据集上的现有基于图形的模型,这表明临界三维几何信息确实捕获。
translated by 谷歌翻译
通过定向消息传递通过方向消息通过的图形神经网络最近在多个分子特性预测任务上设置了最先进的技术。然而,它们依赖于通常不可用的原子位置信息,并获得它通常非常昂贵甚至不可能。在本文中,我们提出了合成坐标,使得能够使用高级GNN而不需要真正的分子配置。我们提出了两个距离作为合成坐标:使用个性化PageRank的对称变体指定分子配置的粗糙范围和基于图的距离的距离界限。为了利用距离和角度信息,我们提出了一种将正常图形神经网络转换为定向MPNN的方法。我们表明,通过这种转变,我们可以将正常图形神经网络的误差减少55%在锌基准。我们还通过在SMP和DimeNet ++模型中纳入合成坐标,在锌和自由QM9上设定了最新技术。我们的实现可在线获取。
translated by 谷歌翻译
图神经网络(GNN)从材料科学家那里引起了越来越多的关注,并证明了建立结构和属性之间的连接的高能力。但是,只有仅提供的未删除结构作为输入,很少有GNN模型可以预测带有可接受的误差水平的放松配置的热力学特性。在这项工作中,我们开发了基于Dimenet ++和混合密度网络的多任务(MT)体系结构,以提高此类任务的性能。将基于CU的单原子合金催化剂的共吸附作为例证,我们表明我们的方法可以可靠地估计CO的吸附能,其平均绝对误差为0.087 eV,从初始CO的吸附结构中,而无需昂贵的第一原则计算。此外,与其他最先进的GNN方法相比,我们的模型在预测具有看不见的底物表面或掺杂物种的催化性能时具有提高的概括能力。我们表明,拟议的GNN策略可以促进催化剂发现。
translated by 谷歌翻译
我们提供了证据表明,学到的密度功能理论(``dft')的力场已准备好进行基态催化剂发现。我们的关键发现是,尽管预测的力与地面真相有很大差异,但使用从超过50 \%的评估系统中使用RPBE功能的能量与使用RPBE功能相似或较低能量的力量的力量与使用RPBE功能相似或较低的力量放松。这具有令人惊讶的含义,即学习的潜力可能已经准备好在挑战性的催化系统中替换DFT,例如在Open Catalyst 2020数据集中发现的电位。此外,我们表明,在局部谐波能量表面上具有与目标DFT能量相同的局部谐波能量表面训练的力场也能够在50 \%的情况下找到较低或相似的能量结构。与在真实能量和力量训练的标准模型相比,这种``简易电位''的收敛步骤更少,这进一步加速了计算。它的成功说明了一个关键:即使模型具有高力误差,学到的电位也可以定位能量最小值。结构优化的主要要求仅仅是学到的电位具有正确的最小值。由于学到的电位与系统大小的速度快速且尺寸为线性,因此我们的结果开辟了快速找到大型系统基础状态的可能性。
translated by 谷歌翻译
Use of graphs to represent molecular crystals has become popular in recent years as they provide a natural translation from atoms and bonds to nodes and edges. Graphs capture structure, while remaining invariant to the symmetries that crystals display. Several works in property prediction, including those with state-of-the-art results, make use of the Crystal Graph. The present work offers a graph based on Point-wise Distance Distributions which retains symmetrical invariance, decreases computational load, and yields similar or better prediction accuracy on both experimental and simulated crystals.
translated by 谷歌翻译
产生具有良好稳定性特性的候选晶体结构的有效算法可以在数据驱动的材料发现中起关键作用。在这里,我们表明,晶体扩散变异自动编码器(CDVAE)能够生成高化学和结构多样性和形成能量的二维(2D)材料,这些材料反映了训练结构。具体来说,我们在2615 2D材料上训练CDVAE,其能量上方的凸壳$ \ delta h _ {\ mathrm {hull}} <0.3 $ ev/atom,并生成我们使用密度功能理论(DFT)放松的5003材料。我们还通过系统的元素替代训练结构生成14192个新晶体。我们发现,生成模型和晶格装饰方法是互补和产量材料具有相似稳定性的材料,但晶体结构和化学成分非常不同。总共我们发现11630预测了新的2D材料,其中8599个具有$ \ delta h _ {\ mathrm {hull}} <0.3 $ ev/Atom作为种子结构,而2004年,2004年在Convex Hull的50 MEV之内合成。所有材料的松弛原子结构都可以在开放计算2D材料数据库(C2DB)中获得。我们的工作将CDVAE确定为有效且可靠的晶体生成机器,并显着扩大了2D材料的空间。
translated by 谷歌翻译
数据驱动的机器学习方法有可能显着加速材料设计的速率,而不是传统的人类指导方法。这些方法将有助于识别或在生成模型的情况下,甚至可以创建具有一组指定功能特性的新型材料结构,然后在实验室中合成或隔离。对于晶体结构的产生,关键的瓶颈在于为机器学习模型开发合适的原子结构指纹或表示,类似于分子生成中使用的基于图或微笑的表示。但是,找到对翻译,旋转和排列不变的数据有效表示,而笛卡尔原子坐标仍然是可逆的,仍然是一个持续的挑战。在这里,我们通过采用具有所需的不变的现有的不可糊化表示并开发算法来通过使用自动分化的基于梯度的优化来重建原子坐标,从而提出了一种替代方法。然后,可以将其与生成机器学习模型耦合,该模型在表示空间内生成新材料,而不是在数据范围内的笛卡尔空间中生成新材料。在这项工作中,我们使用以原子为中心的对称函数来实现这种端到端的结构生成方法,作为表示和条件变化自动编码器作为生成模型。我们能够成功地生成亚纳米PT纳米颗粒的新颖和有效的原子结构,作为概念证明。此外,该方法可以很容易地扩展到任何合适的结构表示形式,从而为基于结构的生成提供了强大的,可推广的框架。
translated by 谷歌翻译
图神经网络(GNN)是机器学习中非常流行的方法,并且非常成功地应用于分子和材料的性质。众所周知,一阶GNN是不完整的,即存在不同的图形,但在通过GNN的镜头看到时似乎相同。因此,更复杂的方案旨在提高其分辨能力。但是,在分子(以及更一般的点云)上的应用,为问题添加了几何维度。构造分子图表表示原子的最直接和普遍的方法将原子视为图中的顶点,并在所选截止中的每对原子之间绘制一个键。键可以用原子之间的距离进行装饰,所得的“距离图NN”(DGNN)在经验上已证明了出色的分辨能力,并广泛用于化学ML,所有已知的不可区分的图都在完全连接的极限中解析。在这里,我们表明,即使对于由3D原子云引起的完全连接图的受限情况也不完整。我们构造了一对不同的点云对产生图形,对于任何截止半径,基于一阶Weisfeiler-Lehman测试都是等效的。这类退化的结构包括化学上可见的构型,为某些完善的GNN架构的原子学机器学习设定了最终的限制。在原子环境描述中明确使用角度或方向信息的模型可以解决这些变性。
translated by 谷歌翻译
建模原子系统的能量和力是计算化学中的一个基本问题,有可能帮助解决世界上许多最紧迫的问题,包括与能源稀缺和气候变化有关的问题。这些计算传统上是使用密度函数理论进行的,这在计算上非常昂贵。机器学习有可能从天数或小时到秒从天数大幅提高这些计算的效率。我们建议球形通道网络(SCN)对原子能量和力进行建模。 SCN是一个图神经网络,节点代表原子并边缘其相邻原子。原子嵌入是使用球形谐波表示的一组球形函数,称为球形通道。我们证明,通过基于3D边缘方向旋转嵌入式,可以在保持消息的旋转模糊性的同时使用更多信息。虽然均衡性是理想的属性,但我们发现,通过在消息传递和聚合中放松这种约束,可以提高准确性。我们在大规模开放催化剂2020数据集中展示了最新的结果,这些数据集在能源和力量预测中,用于许多任务和指标。
translated by 谷歌翻译
Computational catalysis is playing an increasingly significant role in the design of catalysts across a wide range of applications. A common task for many computational methods is the need to accurately compute the minimum binding energy - the adsorption energy - for an adsorbate and a catalyst surface of interest. Traditionally, the identification of low energy adsorbate-surface configurations relies on heuristic methods and researcher intuition. As the desire to perform high-throughput screening increases, it becomes challenging to use heuristics and intuition alone. In this paper, we demonstrate machine learning potentials can be leveraged to identify low energy adsorbate-surface configurations more accurately and efficiently. Our algorithm provides a spectrum of trade-offs between accuracy and efficiency, with one balanced option finding the lowest energy configuration, within a 0.1 eV threshold, 86.63% of the time, while achieving a 1387x speedup in computation. To standardize benchmarking, we introduce the Open Catalyst Dense dataset containing nearly 1,000 diverse surfaces and 87,045 unique configurations.
translated by 谷歌翻译
磁性材料是许多技术的重要组成部分,可以推动生态过渡,包括电动机,风力涡轮机发生器和磁性制冷系统。因此,发现具有大磁矩的材料是越来越优先的。在这里,使用最先进的机器学习方法,我们扫描数十万现有材料的无机晶体结构数据库(ICSD),以找到那些铁磁并具有大的磁矩。晶体图卷积神经网络(CGCNN),材料图网络(MEGNET)和随机森林都培训了包含高吞吐量DFT预测结果的材料项目数据库。对于随机林,我们使用随机方法选择基于化学成分和晶体结构的近百个相关描述符。事实证明,为测试集提供与神经网络相当的测试集。这些不同机器学习方法之间的比较给出了对ICSD数据库预测的错误的估计。
translated by 谷歌翻译
偶极矩是一个物理量,指示分子的极性,并通过反映成分原子的电性能和分子的几何特性来确定。大多数用于表示传统图神经网络方法中图表表示的嵌入方式将分子视为拓扑图,从而为识别几何信息的目标造成了重大障碍。与现有的嵌入涉及均值的嵌入不同,该嵌入适当地处理分子的3D结构不同,我们的拟议嵌入直接表达了偶极矩局部贡献的物理意义。我们表明,即使对于具有扩展几何形状的分子并捕获更多的原子相互作用信息,开发的模型甚至可以合理地工作,从而显着改善了预测结果,准确性与AB-Initio计算相当。
translated by 谷歌翻译
由于控制结构特性关系的分子间相互作用的微妙平衡,预测由分子构建块形成的晶体结构的稳定性是一个高度非平凡的科学问题。一种特别活跃和富有成果的方法涉及对相互作用的化学部分的不同组合进行分类,因为了解不同相互作用的相对能量可以使分子晶体的设计和微调其稳定性。尽管这通常是基于对已知晶体结构中最常见的基序的经验观察进行的,但我们建议采用有监督和无监督的机器学习技术的组合来自动化分子构建块的广泛库。我们介绍了一个针对有机晶体的结合能量预测的结构描述符,并利用以原子为中心的性质来获得对不同化学基团对晶体晶格能量的贡献的数据驱动评估。然后,我们使用结构 - 能量景观的低维表示来解释该库,并讨论可以从本分析中提取的见解的选定示例,从而提供了一个完整的数据库来指导分子材料的设计。
translated by 谷歌翻译
产生稳定材料的周期性结构是材料设计界的长期挑战。这个任务很难,因为稳定的材料只存在于原子的所有可能的周期性布置的低维子空间中:1)坐标必须位于量子力学限定的局部能量最小,而2)全球稳定性也需要遵循结构不同原子类型之间的复杂,但特定的粘合偏好。现有方法未能纳入这些因素,并且经常缺乏适当的侵略者。我们提出了一种晶体扩散变分性AutoEncoder(CDVAE),其捕获材料稳定性的物理感应偏差。通过从稳定材料的数据分布中学习,解码器在扩散过程中产生材料,其将原子坐标朝向较低能量状态移动并更新原子类型以满足邻居之间的粘接偏好。我们的模型还明确地编码了周期性边界的交互,尊重置换,转换,旋转和周期性修正。我们在三个任务中显着优于过去的方法:1)重建输入结构,2)产生有效,多样化和现实的材料和3)产生优化特定性质的材料。我们还为更广泛的机器学习界提供了几个标准数据集和评估指标。
translated by 谷歌翻译