由于需要经济的储存和二元法规的效率,因此无监督的哈希对二元表示学习引起了很多关注。它旨在编码锤子空间中的高维特征,并在实例之间保持相似性。但是,大多数现有方法在基于多种的方法中学习哈希功能。这些方法捕获了数据的局部几何结构(即成对关系),并且在处理具有不同语义信息的实际特征(例如颜色和形状)的真实情况时缺乏令人满意的性能。为了应对这一挑战,在这项工作中,我们提出了一种有效的无监督方法,即共同个性化的稀疏哈希(JPSH),以进行二进制表示学习。具体来说,首先,我们提出了一个新颖的个性化哈希模块,即个性化的稀疏哈希(PSH)。构建了不同的个性化子空间,以反映不同群集的特定类别属性,同一群集中的自适应映射实例与同一锤子空间。此外,我们为不同的个性化子空间部署稀疏约束来选择重要功能。我们还收集了其他群集的优势,以避免过度拟合,以构建PSH模块。然后,为了在JPSH中同时保留语义和成对的相似性,我们将基于PSH和歧管的哈希学习纳入无缝配方中。因此,JPSH不仅将这些实例与不同的集群区分开,而且还保留了集群中的本地邻里结构。最后,采用了交替优化算法,用于迭代捕获JPSH模型的分析解决方案。在四个基准数据集上进行的大量实验验证了JPSH是否在相似性搜索任务上优于几个哈希算法。
translated by 谷歌翻译
最近,深度散列方法已广泛用于图像检索任务。大多数现有的深度散列方法采用一对一量化以降低信息损失。然而,这种类无关的量化不能为网络培训提供歧视反馈。此外,这些方法仅利用单个标签来集成散列函数学习数据的监督信息,这可能导致较差的网络泛化性能和相对低质量的散列代码,因为数据的帧间信息完全忽略。在本文中,我们提出了一种双语义非对称散列(DSAH)方法,其在三倍的约束下产生鉴别性哈希码。首先,DSAH在进行类结构量化之前利用类,以便在量化过程中传输类信息。其次,设计简单但有效的标签机制旨在表征类内的紧凑性和数据间数据间可分离性,从而实现了语义敏感的二进制代码学习。最后,设计了一种有意义的成对相似性保存损耗,以最小化基于亲和图的类相关网络输出之间的距离。利用这三个主要组件,可以通过网络生成高质量的哈希代码。在各种数据集上进行的广泛实验表明了DSAH的优越性与最先进的深度散列方法相比。
translated by 谷歌翻译
哈希(Hashing)将项目数据投入二进制代码已显示出由于其储存量低和高查询速度而显示出跨模式检索的非凡人才。尽管在某些情况下取得了经验成功,但现有的跨模式散列方法通常不存在带有大量标记信息的数据时跨模式差距跨模式差距。为了避免以分裂和纠纷策略的激励,我们提出了深层的歧管散列(DMH),这是一种新颖的方法,是将半分配的无监督的交叉模式检索分为三个子问题,并建立一个简单而又简单而又又有一个简单的方法每个子问题的效率模型。具体而言,第一个模型是通过基于多种学习的半生数据补充的半生数据来构建的,用于获得模态不变的特征,而第二个模型和第三个模型旨在分别学习哈希码和哈希功能。在三个基准上进行的广泛实验表明,与最先进的完全配对和半成本无监督的跨模式散列方法相比,我们的DMH的优势。
translated by 谷歌翻译
由于巨大的未标记数据的出现,现在已经增加了更加关注无监督的功能选择。需要考虑使用更有效的顺序使用样品训练学习方法的样本和潜在效果的分布,以提高该方法的鲁棒性。自定步学习是考虑样本培训顺序的有效方法。在本研究中,通过整合自花枢学习和子空间学习框架来提出无监督的特征选择。此外,保留了局部歧管结构,并且特征的冗余受到两个正则化术语的约束。 $ l_ {2,1 / 2} $ - norm应用于投影矩阵,旨在保留歧视特征,并进一步缓解数据中噪声的影响。然后,提出了一种迭代方法来解决优化问题。理论上和实验证明了该方法的收敛性。将所提出的方法与九个现实世界数据集上的其他技术的算法进行比较。实验结果表明,该方法可以提高聚类方法的性能,优于其他比较算法。
translated by 谷歌翻译
由于有效的检索速度和储存率低,因此学习哈希已被广泛用于视觉检索任务。但是,现有的哈希方法假定查询和检索样品位于同一域内的均匀特征空间中。结果,它们不能直接应用于异质的跨域检索。在本文中,我们提出了一个广义图像转移检索(GITR)问题,该问题遇到了两个关键的瓶颈:1)查询和检索样品可能来自不同的域,导致不可避免的{域分布gap}; 2)两个域的特征可能是异质的或未对准的,从而增加了{特征差距}。为了解决GITR问题,我们提出了一个不对称的转移哈希(ATH)框架,其无监督/半监督/监督的实现。具体而言,ATH通过两个不对称的哈希函数之间的差异来表征域分布差距,并借助于跨域数据构建的新型自适应双分部分图,从而最小化特征差距。通过共同优化不对称的哈希功能和两分图,不仅可以实现知识转移,而且还可以避免由特征比对引起的信息损失。同时,为了减轻负转移,通过涉及域亲和图来保留单域数据的内在几何结构。对不同GITR子任务下的单域和跨域基准测试的广泛实验表明,与最新的哈希方法相比,我们的ATH方法的优越性。
translated by 谷歌翻译
跨模式哈希是解决大型多媒体检索问题的成功方法。提出了许多基于矩阵分解的哈希方法。但是,现有方法仍然在一些问题上遇到困难,例如如何有效地生成二元代码,而不是直接放松它们的连续性。此外,大多数现有方法选择使用$ n \ times n $相似性矩阵进行优化,这使得内存和计算无法承受。在本文中,我们提出了一种新型的不对称可伸缩式模式哈希(ASCMH)来解决这些问题。首先,它引入了集体矩阵分解,以从不同模态的内核特征中学习一个共同的潜在空间,然后将相似性矩阵优化转换为距距离距离差异问题,并借助语义标签和共同的潜在空间。因此,$ n \ times n $不对称优化的计算复杂性得到了缓解。在一系列哈希码中,我们还采用了标签信息的正交约束,这对于搜索准确性是必不可少的。因此,可以大大减少计算的冗余。为了有效的优化并可扩展到大规模数据集,我们采用了两步方法,而不是同时优化。在三个基准数据集上进行了广泛的实验:Wiki,Mirflickr-25K和NUS范围内,表明我们的ASCMH在准确性和效率方面表现出了最先进的跨模式散列方法。
translated by 谷歌翻译
最近,为了提高无监督的图像检索性能,通过设计语义相似性矩阵提出了许多无监督的哈希方法,该方法基于预先训练的CNN模型提取的图像功能之间的相似性。但是,这些方法中的大多数倾向于忽略图像中包含的高级抽象语义概念。直观地,概念在计算图像之间的相似性中起着重要作用。在实际情况下,每个图像都与某些概念相关联,如果两个图像共享更相同的概念,则两个图像之间的相似性将更大。受到上述直觉的启发,在这项工作中,我们提出了一种带有语义概念挖掘的新颖无监督的散列散布,称为UHSCM,该挖掘利用VLP模型来构建高质量的相似性矩阵。具体而言,首先收集一组随机选择的概念。然后,通过使用及时的工程进行视觉预审进(VLP)模型,该模型在视觉表示学习中表现出强大的力量,根据训练图像将一组概念降低。接下来,提出的方法UHSCM应用了VLP模型,并再次提示挖掘每个图像的概念分布,并基于挖掘的概念分布构建高质量的语义相似性矩阵。最后,以语义相似性矩阵作为指导信息,提出了一种新颖的散列损失,并提出了基于对比度损失的正则化项,以优化哈希网络。在三个基准数据集上进行的大量实验表明,所提出的方法在图像检索任务中优于最新基准。
translated by 谷歌翻译
由于其在计算和存储的效率,散列广泛应用于大型多媒体数据上的多模式检索。在本文中,我们提出了一种用于可伸缩图像文本和视频文本检索的新型深度语义多模式散列网络(DSMHN)。所提出的深度散列框架利用2-D卷积神经网络(CNN)作为骨干网络,以捕获图像文本检索的空间信息,而3-D CNN作为骨干网络以捕获视频的空间和时间信息 - 文本检索。在DSMHN中,通过显式保留帧间性相似性和岩石性语义标签,共同学习两组模态特定散列函数。具体地,假设学习散列代码应该是对分类任务的最佳选择,通过在所得哈希代码上嵌入语义标签来共同训练两个流网络以学习散列函数。此外,提出了一种统一的深层多模式散列框架,通过利用特征表示学习,互相相似度 - 保存学习,语义标签保留学习和哈希函数学习同时利用不同类型的损耗功能来学习紧凑和高质量的哈希码。该提议的DSMHN方法是用于图像文本和视频文本检索的通用和可扩展的深度散列框架,其可以灵活地集成在不同类型的损耗功能中。我们在四个广泛使用的多媒体检索数据集中对单一模态和跨模型检索任务进行广泛的实验。图像文本和视频文本检索任务的实验结果表明DSMHN显着优于最先进的方法。
translated by 谷歌翻译
旨在解决不完整的多视图数据中缺少部分视图的聚类问题的不完整的多视图聚类,近年来受到了越来越多的关注。尽管已经开发了许多方法,但大多数方法要么无法灵活地处理不完整的多视图数据,因此使用任意丢失的视图,或者不考虑视图之间信息失衡的负面因素。此外,某些方法并未完全探索所有不完整视图的局部结构。为了解决这些问题,本文提出了一种简单但有效的方法,称为局部稀疏不完整的多视图聚类(LSIMVC)。与现有方法不同,LSIMVC打算通过优化一个稀疏的正则化和新颖的图形嵌入式多视图矩阵分数模型来从不完整的多视图数据中学习稀疏和结构化的潜在表示。具体而言,在基于矩阵分解的这种新型模型中,引入了基于L1规范的稀疏约束,以获得稀疏的低维单个表示和稀疏共识表示。此外,引入了新的本地图嵌入项以学习结构化共识表示。与现有作品不同,我们的本地图嵌入术语汇总了图形嵌入任务和共识表示任务中的简洁术语。此外,为了减少多视图学习的不平衡因素,将自适应加权学习方案引入LSIMVC。最后,给出了有效的优化策略来解决我们提出的模型的优化问题。在六个不完整的多视图数据库上执行的全面实验结果证明,我们的LSIMVC的性能优于最新的IMC方法。该代码可在https://github.com/justsmart/lsimvc中找到。
translated by 谷歌翻译
多视图无监督的特征选择(MUF)已被证明是一种有效的技术,可降低多视图未标记数据的维度。现有方法假定所有视图都已完成。但是,多视图数据通常不完整,即,某些视图中显示了一部分实例,但并非所有视图。此外,学习完整的相似性图,作为现有MUFS方法中重要的有前途的技术,由于缺少的观点而无法实现。在本文中,我们提出了一个基于互补的和共识学习的不完整的多视图无监督的特征选择方法(C $^{2} $ IMUFS),以解决上述问题。具体而言,c $^{2} $ imufs将功能选择集成到扩展的加权非负矩阵分解模型中,配备了自适应学习视图和稀疏的$ \ ell_ {2,p} $ - norm-norm,它可以提供更好的提供适应性和灵活性。通过从不同视图得出的多个相似性矩阵的稀疏线性组合,介绍了互补学习引导的相似性矩阵重建模型,以在每个视图中获得完整的相似性图。此外,c $^{2} $ imufs学习了跨不同视图的共识聚类指示器矩阵,并将其嵌入光谱图术语中以保留本地几何结构。现实世界数据集的全面实验结果证明了与最新方法相比,C $^{2} $ IMUF的有效性。
translated by 谷歌翻译
Hashing has been widely researched to solve the large-scale approximate nearest neighbor search problem owing to its time and storage superiority. In recent years, a number of online hashing methods have emerged, which can update the hash functions to adapt to the new stream data and realize dynamic retrieval. However, existing online hashing methods are required to update the whole database with the latest hash functions when a query arrives, which leads to low retrieval efficiency with the continuous increase of the stream data. On the other hand, these methods ignore the supervision relationship among the examples, especially in the multi-label case. In this paper, we propose a novel Fast Online Hashing (FOH) method which only updates the binary codes of a small part of the database. To be specific, we first build a query pool in which the nearest neighbors of each central point are recorded. When a new query arrives, only the binary codes of the corresponding potential neighbors are updated. In addition, we create a similarity matrix which takes the multi-label supervision information into account and bring in the multi-label projection loss to further preserve the similarity among the multi-label data. The experimental results on two common benchmarks show that the proposed FOH can achieve dramatic superiority on query time up to 6.28 seconds less than state-of-the-art baselines with competitive retrieval accuracy.
translated by 谷歌翻译
在本文中,我们首先尝试调查深度哈希学习与车辆重新识别的集成。我们提出了一个深度哈希的车辆重新识别框架,被称为DVHN,这基本上减少了存储器使用,并在预留最接近的邻居搜索精度的同时提高检索效率。具体地,〜DVHN通过联合优化特征学习网络和哈希码生成模块,直接为每个图像直接学习离散的紧凑型二进制哈希代码。具体地,我们直接将来自卷积神经网络的输出限制为离散二进制代码,并确保学习的二进制代码是对分类的最佳选择。为了优化深度离散散列框架,我们进一步提出了一种用于学习二进制相似性保存散列代码的交替最小化方法。在两个广泛研究的车辆重新识别数据集 - \ textbf {sportid}和\ textbf {veri} - 〜〜\ textbf {veri} - 〜已经证明了我们对最先进的深哈希方法的方法的优越性。 2048美元的TextBF {DVHN}价格可以实现13.94 \%和10.21 \%的准确性改进\ textbf {map}和\ textbf {stuckbf {stank @ 1}的\ textbf {stuckid(800)} dataSet。对于\ textbf {veri},我们分别实现了35.45 \%和32.72 \%\ textbf {rank @ 1}和\​​ textbf {map}的性能增益。
translated by 谷歌翻译
在本文中,我们采用了最大化的互信息(MI)方法来解决无监督的二进制哈希代码的问题,以实现高效的跨模型检索。我们提出了一种新颖的方法,被称为跨模型信息最大散列(CMIMH)。首先,要学习可以保留模跨和跨间相似性的信息的信息,我们利用最近估计MI的变分的进步,以最大化二进制表示和输入特征之间的MI以及不同方式的二进制表示之间的MI。通过在假设由多变量Bernoulli分布模型的假设下联合最大化这些MIM,我们可以学习二进制表示,该二进制表示,其可以在梯度下降中有效地以微量批量方式有效地保留帧内和模态的相似性。此外,我们发现尝试通过学习与来自不同模式的相同实例的类似二进制表示来最小化模态差距,这可能导致更少的信息性表示。因此,在减少模态间隙和失去模态 - 私人信息之间平衡对跨模型检索任务很重要。标准基准数据集上的定量评估表明,该方法始终如一地优于其他最先进的跨模型检索方法。
translated by 谷歌翻译
张量分解是学习多通道结构和来自高维数据的异质特征的有效工具,例如多视图图像和多通道脑电图(EEG)信号,通常由张量表示。但是,大多数张量分解方法是线性特征提取技术,它们无法在高维数据中揭示非线性结构。为了解决此类问题,已经提出了许多算法,以同时执行线性和非线性特征提取。代表性算法是用于图像群集的图形正则非负矩阵分解(GNMF)。但是,正常的2阶图只能模拟对象的成对相似性,该对象无法充分利用样品的复杂结构。因此,我们提出了一种新型方法,称为HyperGraph Narodarized非负张量分解(HyperNTF),该方法利用超图来编码样品之间的复杂连接,并采用了与最终的典型多形(CP)分解模式相对应的因子矩阵,为低维度表示。关于合成歧管,现实世界图像数据集和脑电图信号的广泛实验,表明HyperNTF在降低,聚类和分类方面优于最先进的方法。
translated by 谷歌翻译
尽管以前基于图的多视图聚类算法已经取得了重大进展,但其中大多数仍面临三个限制。首先,他们经常遭受高计算复杂性的困扰,这限制了他们在大规模场景中的应用。其次,他们通常在单视图级别或视图传感级别上执行图形学习,但经常忽略单视图和共识图的联合学习的可能性。第三,其中许多人依靠$ k $ - 表示光谱嵌入的离散化,这些嵌入缺乏直接使用离散群集结构直接学习图形的能力。鉴于此,本文通过统一和离散的两部分图(UDBGL)提出了一种有效的多视图聚类方法。具体而言,基于锚的子空间学习被合并为从多个视图中学习特定的二分化图,并利用双方图融合来学习具有自适应重量学习的视图 - 谐镜双分歧图。此外,施加Laplacian等级约束以确保融合的两分图具有离散的群集结构(具有特定数量的连接组件)。通过同时制定特定视图的两分图学习,视图 - 共表的两分图学习以及离散的群集结构学习到统一的目标函数中,然后设计有效的最小化算法来解决此优化问题,并直接实现离散的聚类解决方案解决方案解决方案解决方案解决方案。不需要其他分区,这特别是数据大小的线性时间复杂性。各种多视图数据集的实验证明了我们的UDBGL方法的鲁棒性和效率。
translated by 谷歌翻译
最近流行的对比学习范式提出了无监督的哈希的发展。但是,以前的基于学习的作品受到(1)基于全球图像表示的数据相似性挖掘的障碍,以及(2)由数据增强引起的哈希代码语义损失。在本文中,我们提出了一种新颖的方法,即加权的伴侣哈希(WCH),以朝着解决这两个问题迈出一步。我们介绍了一个新型的相互注意模块,以减轻由缺失的图像结构引起的网络特征中信息不对称问题的问题。此外,我们探索了图像之间的细粒语义关系,即,我们将图像分为多个斑块并计算斑块之间的相似性。反映深层图像关系的聚合加权相似性是经过蒸馏而来的,以促进哈希码以蒸馏损失的方式学习,从而获得更好的检索性能。广泛的实验表明,所提出的WCH在三个基准数据集上显着优于现有的无监督哈希方法。
translated by 谷歌翻译
跨模态散列(CMH)是跨模型近似最近邻搜索中最有前途的方法之一。大多数CMH解决方案理想地假设培训和测试集的标签是相同的。但是,通常违反假设,导致零拍摄的CMH问题。最近解决此问题的努力侧重于使用标签属性将知识转移到未见的类。但是,该属性与多模态数据的特征隔离。为了减少信息差距,我们介绍了一种名为LAEH的方法(嵌入零拍跨模型散列的标签属性)。 Laeh首先通过Word2Vec模型获取标签的初始语义属性向量,然后使用转换网络将它们转换为常见的子空间。接下来,它利用散列向量和特征相似矩阵来指导不同方式的特征提取网络。与此同时,Laeh使用属性相似性作为标签相似度的补充,以纠正标签嵌入和常见子空间。实验表明,Laeh优于相关代表零射和跨模态散列方法。
translated by 谷歌翻译
与传统的散列方法相比,深度散列方法生成具有丰富语义信息的哈希代码,大大提高了图像检索场中的性能。然而,对于当前的深度散列方法预测硬示例的相似性是不满意的。它存在影响学习难度示例能力的两个主要因素,这是弱的关键特征提取和硬示例的短缺。在本文中,我们提供了一种新的端到端模型,可以从硬示例中提取关键特征,并使用准确的语义信息获得哈希码。此外,我们还重新设计了一个艰难的成对损失功能,以评估难度和更新的例子罚款。它有效缓解了硬例中的短缺问题。CiFAR-10和Nus-rige的实验结果表明我们的模型表现出基于主流散列的图像检索方法的表现。
translated by 谷歌翻译
Multi-label learning is often used to mine the correlation between variables and multiple labels, and its research focuses on fully extracting the information between variables and labels. The $\ell_{2,1}$ regularization is often used to get a sparse coefficient matrix, but the problem of multicollinearity among variables cannot be effectively solved. In this paper, the proposed model can choose the most relevant variables by solving a joint constraint optimization problem using the $\ell_{2,1}$ regularization and Frobenius regularization. In manifold regularization, we carry out a random walk strategy based on the joint structure to construct a neighborhood graph, which is highly robust to outliers. In addition, we give an iterative algorithm of the proposed method and proved the convergence of this algorithm. The experiments on the real-world data sets also show that the comprehensive performance of our method is consistently better than the classical method.
translated by 谷歌翻译
Hierarchical semantic structures, naturally existing in real-world datasets, can assist in capturing the latent distribution of data to learn robust hash codes for retrieval systems. Although hierarchical semantic structures can be simply expressed by integrating semantically relevant data into a high-level taxon with coarser-grained semantics, the construction, embedding, and exploitation of the structures remain tricky for unsupervised hash learning. To tackle these problems, we propose a novel unsupervised hashing method named Hyperbolic Hierarchical Contrastive Hashing (HHCH). We propose to embed continuous hash codes into hyperbolic space for accurate semantic expression since embedding hierarchies in hyperbolic space generates less distortion than in hyper-sphere space and Euclidean space. In addition, we extend the K-Means algorithm to hyperbolic space and perform the proposed hierarchical hyperbolic K-Means algorithm to construct hierarchical semantic structures adaptively. To exploit the hierarchical semantic structures in hyperbolic space, we designed the hierarchical contrastive learning algorithm, including hierarchical instance-wise and hierarchical prototype-wise contrastive learning. Extensive experiments on four benchmark datasets demonstrate that the proposed method outperforms the state-of-the-art unsupervised hashing methods. Codes will be released.
translated by 谷歌翻译