FDG-PET揭示了具有轻度认知障碍(MCI)和Alzheimer疾病(AD)的个体的脑代谢改变。通过计算机辅助诊断(CAD)技术源自FDG-PET的一些生物标志物已被证明可以准确诊断正常控制(NC),MCI和AD。然而,使用FDG-PET图像鉴定早期MCI(EMCI)和晚期MCI(LMCI)的研究仍然不足。与基于FMRI和DTI图像的研究相比,FDG-PET图像中区域间表示特征的研究不足。此外,考虑到不同个体的可变性,一些与两个类非常相似的硬样品限制了分类性能。为了解决这些问题,本文提出了一种新的双线性池和度量学习网络(BMNet),其可以通过构造嵌入空间来提取区域间表示特征并区分硬样品。为了验证所提出的方法,我们从ADNI收集998个FDG-PET图像。在常见的预处理步骤之后,根据自动解剖地标(AAL)模板从每个FDG-PET图像中提取90个特征,然后被发送到所提出的网络。对多种两类分类进行了广泛的5倍交叉验证实验。实验表明,在向基线模型中添加双线性池模块和度量损耗后,大多数度量都会得到改善。具体而言,在EMCI和LMCI之间的分类任务中,在添加三维度量损失后,特异性提高了6.38%,并且使用双线性池模块后,负预测值(NPV)在3.45%后提高了3.45%。
translated by 谷歌翻译
阿尔茨海默病(AD)是一种不可逆的神经发电疾病的大脑。疾病可能会导致记忆力损失,难以沟通和迷失化。对于阿尔茨海默病的诊断,通常需要一系列尺度来临床评估诊断,这不仅增加了医生的工作量,而且还使诊断结果高度主观。因此,对于阿尔茨海默病,成像手段寻找早期诊断标志物已成为一个首要任务。在本文中,我们提出了一种新颖的3DMGNET架构,该架构是多基体和卷积神经网络的统一框架,以诊断阿尔茨海默病(AD)。该模型使用Open DataSet(ADNI DataSet)培训,然后使用较小的DataSet进行测试。最后,该模型为AD VS NC分类实现了92.133%的精度,并显着降低了模型参数。
translated by 谷歌翻译
Late-life depression (LLD) is a highly prevalent mood disorder occurring in older adults and is frequently accompanied by cognitive impairment (CI). Studies have shown that LLD may increase the risk of Alzheimer's disease (AD). However, the heterogeneity of presentation of geriatric depression suggests that multiple biological mechanisms may underlie it. Current biological research on LLD progression incorporates machine learning that combines neuroimaging data with clinical observations. There are few studies on incident cognitive diagnostic outcomes in LLD based on structural MRI (sMRI). In this paper, we describe the development of a hybrid representation learning (HRL) framework for predicting cognitive diagnosis over 5 years based on T1-weighted sMRI data. Specifically, we first extract prediction-oriented MRI features via a deep neural network, and then integrate them with handcrafted MRI features via a Transformer encoder for cognitive diagnosis prediction. Two tasks are investigated in this work, including (1) identifying cognitively normal subjects with LLD and never-depressed older healthy subjects, and (2) identifying LLD subjects who developed CI (or even AD) and those who stayed cognitively normal over five years. To the best of our knowledge, this is among the first attempts to study the complex heterogeneous progression of LLD based on task-oriented and handcrafted MRI features. We validate the proposed HRL on 294 subjects with T1-weighted MRIs from two clinically harmonized studies. Experimental results suggest that the HRL outperforms several classical machine learning and state-of-the-art deep learning methods in LLD identification and prediction tasks.
translated by 谷歌翻译
主观认知下降(SCD)是阿尔茨海默氏病(AD)的临床前阶段,甚至在轻度认知障碍(MCI)之前就发生。渐进式SCD将转换为MCI,并有可能进一步发展为AD。因此,通过神经成像技术(例如,结构MRI)对进行性SCD的早期鉴定对于AD的早期干预具有巨大的临床价值。但是,现有的基于MRI的机器/深度学习方法通​​常会遇到小样本大小的问题,这对相关的神经影像学分析构成了巨大挑战。我们旨在解决本文的主要问题是如何利用相关领域(例如AD/NC)协助SCD的进展预测。同时,我们担心哪些大脑区域与进行性SCD的识别更加紧密相关。为此,我们提出了一个注意引导自动编码器模型,以进行有效的跨域适应,以促进知识转移从AD到SCD。所提出的模型由四个关键组成部分组成:1)用于学习不同域的共享子空间表示的功能编码模块,2)用于自动定义大脑中定义的兴趣障碍区域的注意模块,3)用于重构的解码模块原始输入,4)用于鉴定脑疾病的分类模块。通过对这四个模块的联合培训,可以学习域不变功能。同时,注意机制可以强调与脑部疾病相关的区域。公开可用的ADNI数据集和私人CLAS数据集的广泛实验证明了该方法的有效性。提出的模型直接可以在CPU上仅5-10秒进行训练和测试,并且适用于具有小数据集的医疗任务。
translated by 谷歌翻译
早期发现阿尔茨海默氏病对于部署干预措施和减慢疾病进展至关重要。在过去的十年中,已经探索了许多机器学习和深度学习算法,目的是为阿尔茨海默氏症建立自动检测。数据增强技术和先进的深度学习体系结构的进步已经在该领域开辟了新的边界,研究正在快速发展。因此,这项调查的目的是概述有关阿尔茨海默氏病诊断深度学习模型的最新研究。除了对众多数据源,神经网络架构以及常用的评估措施进行分类外,我们还对实施和可重复性进行了分类。我们的目标是协助感兴趣的研究人员跟上最新的发展,并将早期的调查作为基准。此外,我们还指出了该主题的未来研究方向。
translated by 谷歌翻译
纵向和多模式数据中固有的纵向变化和互补信息在阿尔茨海默氏病(AD)预测中起重要作用,尤其是在确定即将患有AD的轻度认知障碍受试者方面。但是,纵向和多模式数据可能缺少数据,这阻碍了这些数据的有效应用。此外,以前的纵向研究需要现有的纵向数据才能实现预测,但是预计在临床实践中,将在患者的基线访问(BL)上进行AD预测。因此,我们提出了一个多视图插补和交叉注意网络(MCNET),以在统一的框架中整合数据归档和AD预测,并实现准确的AD预测。首先,提出了一种多视图插补方法与对抗性学习相结合,该方法可以处理各种缺失的数据情况并减少插补错误。其次,引入了两个跨注意区块,以利用纵向和多模式数据中的潜在关联。最后,为数据插补,纵向分类和AD预测任务而建立了多任务学习模型。当对模型进行适当训练时,可以通过BL数据利用从纵向数据中学到的疾病进展信息以改善AD预测。在BL处的两个独立的测试集和单模数据对所提出的方法进行了测试,以验证其对AD预测的有效性和灵活性。结果表明,MCNET的表现优于几种最新方法。此外,提出了MCNET的解释性。因此,我们的MCNET是一种在纵向和多模式数据分析的AD预测中具有巨大应用潜力的工具。代码可在https://github.com/meiyan88/mcnet上找到。
translated by 谷歌翻译
机器学习在医学图像分析中发挥着越来越重要的作用,产卵在神经影像症的临床应用中的新进展。之前有一些关于机器学习和癫痫的综述,它们主要专注于电生理信号,如脑电图(EEG)和立体脑电图(SEENG),同时忽略癫痫研究中神经影像的潜力。 NeuroImaging在确认癫痫区域的范围内具有重要的优点,这对于手术后的前诊所评估和评估至关重要。然而,脑电图难以定位大脑中的准确癫痫病变区。在这篇综述中,我们强调了癫痫诊断和预后在癫痫诊断和预后的背景下神经影像学和机器学习的相互作用。我们首先概述癫痫诊所,MRI,DWI,FMRI和PET中使用的癫痫和典型的神经影像姿态。然后,我们在将机器学习方法应用于神经影像数据的方法:i)将手动特征工程和分类器的传统机器学习方法阐述了两种方法,即卷积神经网络和自动化器等深度学习方法。随后,详细地研究了对癫痫,定位和横向化任务等分割,本地化和横向化任务的应用,以及与诊断和预后直接相关的任务。最后,我们讨论了目前的成就,挑战和潜在的未来方向,希望为癫痫的计算机辅助诊断和预后铺平道路。
translated by 谷歌翻译
功能磁共振成像(fMRI)的功能连通性网络(FCN)数据越来越多地用于诊断脑疾病。然而,最新的研究用来使用单个脑部分析地图集以一定的空间尺度构建FCN,该空间尺度很大程度上忽略了层次范围内不同空间尺度的功能相互作用。在这项研究中,我们提出了一个新型框架,以对脑部疾病诊断进行多尺度FCN分析。我们首先使用一组定义明确的多尺地图像来计算多尺度FCN。然后,我们利用多尺度地图集中各个区域之间具有生物学意义的大脑分层关系,以跨多个空间尺度进行淋巴结池,即“ Atlas指导的池”。因此,我们提出了一个基于多尺度的层次图形卷积网络(MAHGCN),该网络(MAHGCN)建立在图形卷积和ATLAS引导的池上,以全面地从多尺度FCN中详细提取诊断信息。关于1792名受试者的神经影像数据的实验证明了我们提出的方法在诊断阿尔茨海默氏病(AD),AD的前驱阶段(即轻度认知障碍[MCI])以及自闭症谱系障碍(ASD),,AD的前瞻性阶段(即,轻度认知障碍[MCI]),,精度分别为88.9%,78.6%和72.7%。所有结果都显示出我们提出的方法比其他竞争方法具有显着优势。这项研究不仅证明了使用深度学习增强的静止状态fMRI诊断的可行性,而且还强调,值得探索多尺度脑层次结构中的功能相互作用,并将其整合到深度学习网络体系结构中,以更好地理解有关的神经病理学。脑疾病。
translated by 谷歌翻译
阿尔茨海默氏病(AD)是痴呆症的最常见原因。早期检测对于减慢疾病并减轻与进展相关的风险至关重要。虽然MRI和FDG-PET的组合是诊断的最佳基于图像的工具,但FDG-PET并不总是可用。仅MRI对阿尔茨海默氏病的可靠检测可能是有益的,尤其是在FDG-PET可能对所有患者负担不起的地区。为此,我们提出了一种基于U-NET的多任务方法,该方法将T1加权MR图像作为输入,以生成合成FDG-PET图像,并将患者的痴呆症进展分为认知正常(CN),认知障碍(MCI)和广告。两个任务头中使用的注意门可以可视化大脑中最相关的部分,指导检查员并增加可解释性。结果表明,合成FDG-PET图像的成功产生以及幼稚单任务基线的疾病分类的性能提高。
translated by 谷歌翻译
阿尔茨海默氏病的准确诊断和预后对于开发新疗法和降低相关成本至关重要。最近,随着卷积神经网络的进步,已经提出了深度学习方法,以使用结构MRI自动化这两个任务。但是,这些方法通常缺乏解释性和泛化,预后表现有限。在本文中,我们提出了一个旨在克服这些局限性的新型深框架。我们的管道包括两个阶段。在第一阶段,使用125个3D U-NET来估计整个大脑的体voxelwise等级得分。然后将所得的3D地图融合,以构建一个可解释的3D分级图,以指示结构水平的疾病严重程度。结果,临床医生可以使用该地图来检测受疾病影响的大脑结构。在第二阶段,分级图和受试者的年龄用于使用图卷积神经网络进行分类。基于216名受试者的实验结果表明,与在不同数据集上进行AD诊断和预后的最新方法相比,我们的深框架的竞争性能。此外,我们发现,使用大量的U-NET处理不同的重叠大脑区域,可以提高所提出方法的概括能力。
translated by 谷歌翻译
阿尔茨海默氏病(AD)是痴呆症的最常见形式,由于痴呆症的多因素病因,通常难以诊断。关于基于神经成像的基于神经成像的深度神经网络(DNN)的著作表明,结构磁共振图像(SMRI)和氟脱氧葡萄糖正电子发射层析成像(FDG-PET)可提高健康对照和受试者的研究人群的精度。与广告。但是,这一结果与既定的临床知识冲突,即FDG-PET比SMRI更好地捕获AD特定的病理。因此,我们提出了一个框架,用于对基于FDG-PET和SMRI进行多模式DNN的系统评估,并重新评估单模式DNN和多模式DNN,用于二进制健康与AD,以及三向健康/轻度的健康/轻度认知障碍/广告分类。我们的实验表明,使用FDG-PET的单模式网络的性能优于MRI(准确性0.91 vs 0.87),并且在组合时不会显示出改进。这符合有关AD生物标志物的既定临床知识,但提出了有关多模式DNN的真正好处的问题。我们认为,未来关于多模式融合的工作应系统地评估我们提出的评估框架后的个人模式的贡献。最后,我们鼓励社区超越健康与AD分类,并专注于痴呆症的鉴别诊断,在这种诊断中,在这种诊断中,融合了多模式图像信息与临床需求相符。
translated by 谷歌翻译
与大脑变化相关的阿尔茨海默氏病(AD)和轻度认知障碍(MCI)的评估仍然是一项艰巨的任务。最近的研究表明,多模式成像技术的组合可以更好地反映病理特征,并有助于更准确地诊断AD和MCI。在本文中,我们提出了一种新型的基于张量的多模式特征选择和回归方法,用于诊断和生物标志物对正常对照组的AD和MCI鉴定。具体而言,我们利用张量结构来利用多模式数据中固有的高级相关信息,并研究多线性回归模型中的张量级稀疏性。我们使用三种成像方式(VBM- MRI,FDG-PET和AV45-PET)具有疾病严重程度和认知评分的临床参数来分析ADNI数据的方法的实际优势。实验结果表明,我们提出的方法与疾病诊断的最新方法的优越性能以及疾病特异性区域和与模态相关的差异的鉴定。这项工作的代码可在https://github.com/junfish/bios22上公开获得。
translated by 谷歌翻译
在神经影像分析中,功能磁共振成像(fMRI)可以很好地评估没有明显结构病变的脑疾病的大脑功能变化。到目前为止,大多数基于研究的FMRI研究将功能连接性作为疾病分类的基本特征。但是,功能连接通常是根据感兴趣的预定义区域的时间序列计算的,并忽略了每个体素中包含的详细信息,这可能会导致诊断模型的性能恶化。另一个方法论上的缺点是训练深模型的样本量有限。在这项研究中,我们提出了Brainformer,这是一种用于单个FMRI体积的脑疾病分类的一般混合变压器架构,以充分利用素食细节,并具有足够的数据尺寸和尺寸。脑形形式是通过对每个体素内的局部提示进行建模的3D卷积,并捕获两个全球注意力障碍的遥远地区之间的全球关系。局部和全局线索通过单流模型在脑形中汇总。为了处理多站点数据,我们提出了一个归一化层,以将数据标准化为相同的分布。最后,利用一种基于梯度的定位图可视化方法来定位可能的疾病相关生物标志物。我们在五个独立获取的数据集上评估了脑形形成器,包括Abide,ADNI,MPILMBB,ADHD-200和ECHO,以及自闭症疾病,阿尔茨海默氏病,抑郁症,注意力缺陷多动障碍和头痛疾病。结果证明了脑形对多种脑疾病的诊断的有效性和普遍性。脑形物可以在临床实践中促进基于神经成像的精确诊断,并激励FMRI分析中的未来研究。代码可在以下网址获得:https://github.com/ziyaozhangforpcl/brainformer。
translated by 谷歌翻译
Brain network provides important insights for the diagnosis of many brain disorders, and how to effectively model the brain structure has become one of the core issues in the domain of brain imaging analysis. Recently, various computational methods have been proposed to estimate the causal relationship (i.e., effective connectivity) between brain regions. Compared with traditional correlation-based methods, effective connectivity can provide the direction of information flow, which may provide additional information for the diagnosis of brain diseases. However, existing methods either ignore the fact that there is a temporal-lag in the information transmission across brain regions, or simply set the temporal-lag value between all brain regions to a fixed value. To overcome these issues, we design an effective temporal-lag neural network (termed ETLN) to simultaneously infer the causal relationships and the temporal-lag values between brain regions, which can be trained in an end-to-end manner. In addition, we also introduce three mechanisms to better guide the modeling of brain networks. The evaluation results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database demonstrate the effectiveness of the proposed method.
translated by 谷歌翻译
Accurate diagnosis of Alzheimer's disease (AD) is both challenging and time consuming. With a systematic approach for early detection and diagnosis of AD, steps can be taken towards the treatment and prevention of the disease. This study explores the practical application of deep learning models for diagnosis of AD. Due to computational complexity, large training times and limited availability of labelled dataset, a 3D full brain CNN (convolutional neural network) is not commonly used, and researchers often prefer 2D CNN variants. In this study, full brain 3D version of well-known 2D CNNs were designed, trained and tested for diagnosis of various stages of AD. Deep learning approach shows good performance in differentiating various stages of AD for more than 1500 full brain volumes. Along with classification, the deep learning model is capable of extracting features which are key in differentiating the various categories. The extracted features align with meaningful anatomical landmarks, that are currently considered important in identification of AD by experts. An ensemble of all the algorithm was also tested and the performance of the ensemble algorithm was superior to any individual algorithm, further improving diagnosis ability. The 3D versions of the trained CNNs and their ensemble have the potential to be incorporated in software packages that can be used by physicians/radiologists to assist them in better diagnosis of AD.
translated by 谷歌翻译
阿尔茨海默氏病是一种进行性神经退行性疾病,逐渐剥夺患者的认知功能,并可能以死亡结束。随着当今技术的发展,可以通过磁共振成像(MRI)扫描来检测阿尔茨海默氏病。因此,MRI是最常用于诊断和分析阿尔茨海默氏病进展的技术。有了这项技术,可以使用机器学习自动实现对阿尔茨海默氏病的早期诊断的图像识别。尽管机器学习具有许多优势,但目前使用深度学习的应用更广泛地应用,因为它具有更强的学习能力,并且更适合解决图像识别问题。但是,仍然存在一些挑战以实施深度学习,例如对大型数据集的需求,需要大量的计算资源以及需要仔细的参数设置以防止过度拟合或不足。在应对使用深度学习对阿尔茨海默氏病进行分类的挑战时,本研究提出了使用残留网络18层(RESNET-18)体系结构的卷积神经网络(CNN)方法。为了克服对大型且平衡的数据集的需求,使用来自ImageNet的传输学习并加权损耗函数值,以使每个类具有相同的权重。而且,在这项研究中,通过将网络激活函数更改为MISH激活函数以提高准确性,从而进行了实验。从已经进行的测试结果中,使用转移学习,加权损失和MISH激活函数的模型准确性为88.3%。该准确性值来自基线模型,仅获得69.1%的精度。
translated by 谷歌翻译
Alzheimer's Disease (AD), as the most devastating neurodegenerative disease worldwide, has reached nearly 10 million new cases annually. Current technology provides unprecedented opportunities to study the progression and etiology of this disease with the advanced in imaging techniques. With the recent emergence of a society driven by big data and machine learning (ML), researchers have exerted considerable effort to summarize recent advances in ML-based AD diagnosis. Here, we outline some of the most prevalent and recent ML models for assessing the progression of AD and provide insights on the challenges, opportunities, and future directions that could be advantageous to future research in AD using ML.
translated by 谷歌翻译
机器学习技术通常应用于痴呆症预测缺乏其能力,共同学习多个任务,处理时间相关的异构数据和缺失值。在本文中,我们建议使用最近呈现的SShiba模型提出了一个框架,用于在缺失值的纵向数据上联合学习不同的任务。该方法使用贝叶斯变分推理来赋予缺失值并组合多个视图的信息。这样,我们可以将不同的数据视图与共同的潜在空间中的不同时间点相结合,并在同时建模和预测若干输出变量的同时学习每个时间点之间的关系。我们应用此模型以预测痴呆症中的诊断,心室体积和临床评分。结果表明,SSHIBA能够学习缺失值的良好归因,同时预测三个不同任务的同时表现出基线。
translated by 谷歌翻译
视网膜光学相干断层扫描(OCT)和光学相干断层扫描(OCTA)是(早期)诊断阿尔茨海默氏病(AD)的有前途的工具。这些非侵入性成像技术比替代神经影像工具更具成本效益,更容易获得。但是,即使对于训练有素的从业人员来说,解释和分类OCT设备进行的多层扫描也是耗时和挑战。关于机器学习和深度学习方法的调查,涉及对诸如青光眼等各种疾病的OCT扫描自动分析。但是,目前的文献缺乏对使用OCT或OCTA诊断阿尔茨海默氏病或​​认知障碍的广泛调查。这促使我们进行了针对需要介绍该问题的机器/深度学习科学家或从业者的全面调查。本文包含1)对阿尔茨海默氏病和认知障碍的医学背景介绍及其使用OCT和八八片成像方式的诊断,2)从自动分析的角度审查有关该问题的各种技术建议和子问题的回顾,3 )对最近的深度学习研究和可用的OCT/OCTA数据集的系统综述,旨在诊断阿尔茨海默氏病和认知障碍。对于后者,我们使用发布或灭亡软件来搜索来自Scopus,PubMed和Web Science等各种来源的相关研究。我们遵循PRISMA方法筛选了3073参考的初始库,并确定了直接针对AD诊断的十项相关研究(n = 10,3073分)。我们认为缺乏开放的OCT/OCTA数据集(关于阿尔茨海默氏病)是阻碍该领域进展的主要问题。
translated by 谷歌翻译
最近,大脑网络已被广泛采用来研究脑动力学,脑发育和脑部疾病。大脑功能网络上的图表学习技术可以促进发现用于临床表型和神经退行性疾病的新型生物标志物。但是,当前的图形学习技术在大脑网络挖掘上存在几个问题。首先,大多数当前的图形学习模型都是为无符号图设计的,这阻碍了对许多签名网络数据(例如大脑功能网络)的分析。同时,大脑网络数据的不足限制了临床表型预测的模型性能。此外,当前的图形学习模型很少是可以解释的,这可能无法为模型结果提供生物学见解。在这里,我们提出了一个可解释的层次签名的图形表示模型,以从大脑功能网络中提取图形表示,可用于不同的预测任务。为了进一步提高模型性能,我们还提出了一种新策略,以增强功能性脑网络数据以进行对比学习。我们使用HCP和OASIS的数据评估了有关不同分类和回归任务的框架。我们来自广泛的实验的结果表明,与几种最新技术相比,该模型的优越性。此外,我们使用从这些预测任务得出的图形显着性图来证明表型生物标志物的检测和解释。
translated by 谷歌翻译