当将强化学习(RL)代理部署到物理系统中时,我们必须确保这些代理非常了解基本的约束。但是,在许多现实世界中,遵循的限制因素(例如,人类)通常很难在数学上和RL代理商上指定。为了解决这些问题,约束逆强化学习(CIRL)考虑了约束马尔可夫决策过程(CMDP)的形式主义,并通过学习约束功能来估算专家示范中的约束。作为一个新兴的研究主题,Cirl没有共同的基准测试,以前的作品通过手工制作的环境(例如,网格世界)测试了其算法。在本文中,我们在两个主要的应用域:机器人控制和自动驾驶的背景下构建了CIRL基准。我们为每个环境设计相关的约束,并经验研究不同算法基于尊重这些约束的专家轨迹恢复这些约束的能力。为了处理随机动力学,我们提出了一种差异方法,以扩展约束分布,并通过将其与基准上的其他cirl基线进行比较来证明其性能。基准,包括复制CIRL算法性能的信息,可在https://github.com/guiliang/guiliang/cirl-benchmarks-public上公开获得
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
当任何安全违规可能导致灾难性失败时,赛车要求每个车辆都能在其物质范围内驾驶。在这项工作中,我们研究了自主赛车的安全强化学习(RL)的问题,使用车辆的自我摄像机视图和速度作为输入。鉴于任务的性质,自主代理需要能够1)识别并避免复杂的车辆动态下的不安全场景,而2)在快速变化的环境中使子第二决定。为了满足这些标准,我们建议纳入汉密尔顿 - 雅各(HJ)可达性理论,是一般非线性系统的安全验证方法,进入受约束的马尔可夫决策过程(CMDP)框架。 HJ可达性不仅提供了一种了解安全的控制理论方法,还可以实现低延迟安全验证。尽管HJ可达性传统上不可扩展到高维系统,但我们证明了具有神经逼近的,可以直接在视觉上下文中学习HJ安全值 - 迄今为止通过该方法研究的最高尺寸问题。我们在最近发布的高保真自主赛车环境中评估了我们在几个基准任务中的方法,包括安全健身房和学习(L2R)。与安全健身房的其他受约束的RL基线相比,我们的方法非常少的限制性违规,并在L2R基准任务上实现了新的最先进结果。我们在以下匿名纸质网站提供额外可视化代理行为:https://sites.google.com/view/safeautomouracing/home
translated by 谷歌翻译
Safety comes first in many real-world applications involving autonomous agents. Despite a large number of reinforcement learning (RL) methods focusing on safety-critical tasks, there is still a lack of high-quality evaluation of those algorithms that adheres to safety constraints at each decision step under complex and unknown dynamics. In this paper, we revisit prior work in this scope from the perspective of state-wise safe RL and categorize them as projection-based, recovery-based, and optimization-based approaches, respectively. Furthermore, we propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection. This novel technique explicitly enforces hard constraints via the deep unrolling architecture and enjoys structural advantages in navigating the trade-off between reward improvement and constraint satisfaction. To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit, a toolkit that provides off-the-shelf interfaces and evaluation utilities for safety-critical tasks. We then perform a comparative study of the involved algorithms on six benchmarks ranging from robotic control to autonomous driving. The empirical results provide an insight into their applicability and robustness in learning zero-cost-return policies without task-dependent handcrafting. The project page is available at https://sites.google.com/view/saferlkit.
translated by 谷歌翻译
安全加强学习(RL)在对风险敏感的任务上取得了重大成功,并在自主驾驶方面也表现出了希望(AD)。考虑到这个社区的独特性,对于安全广告而言,仍然缺乏高效且可再现的基线。在本文中,我们将SAFERL-KIT释放到基准的安全RL方法,以实现倾向的任务。具体而言,SAFERL-KIT包含了针对零构成的侵略任务的几种最新算法,包括安全层,恢复RL,非政策Lagrangian方法和可行的Actor-Critic。除了现有方法外,我们还提出了一种名为精确惩罚优化(EPO)的新型一阶方法,并充分证明了其在安全AD中的能力。 SAFERL-KIT中的所有算法均在政策设置下实现(i),从而提高了样本效率并可以更好地利用过去的日志; (ii)具有统一的学习框架,为研究人员提供了现成的接口,以将其特定领域的知识纳入基本的安全RL方法中。最后,我们对上述算法进行了比较评估,并阐明了它们的安全自动驾驶功效。源代码可在\ href {https://github.com/zlr20/saferl_kit} {this https url}中获得。
translated by 谷歌翻译
仅国家模仿学习的最新进展将模仿学习的适用性扩展到现实世界中的范围,从而减轻了观察专家行动的需求。但是,现有的解决方案只学会从数据中提取州对行动映射策略,而无需考虑专家如何计划到目标。这阻碍了利用示威游行并限制政策的灵活性的能力。在本文中,我们介绍了解耦政策优化(DEPO),该策略优化(DEPO)明确将策略脱离为高级状态计划者和逆动力学模型。借助嵌入式的脱钩策略梯度和生成对抗训练,DEPO可以将知识转移到不同的动作空间或状态过渡动态,并可以将规划师推广到无示威的状态区域。我们的深入实验分析表明,DEPO在学习最佳模仿性能的同时学习通用目标状态计划者的有效性。我们证明了DEPO通过预训练跨任务转移的吸引力,以及与各种技能共同培训的潜力。
translated by 谷歌翻译
强化学习(RL)已证明可以在各种任务中达到超级人类水平的表现。但是,与受监督的机器学习不同,将其推广到各种情况的学习策略仍然是现实世界中最具挑战性的问题之一。自主驾驶(AD)提供了一个多方面的实验领域,因为有必要在许多变化的道路布局和可能的交通情况大量分布中学习正确的行为,包括个人驾驶员个性和难以预测的交通事件。在本文中,我们根据可配置,灵活和性能的代码库为AD提出了一个具有挑战性的基准。我们的基准测试使用了随机场景生成器的目录,包括用于道路布局和交通变化的多种机制,不同的数值和视觉观察类型,不同的动作空间,不同的车辆模型,并允许在静态场景定义下使用。除了纯粹的算法见解外,我们面向应用程序的基准还可以更好地理解设计决策的影响,例如行动和观察空间对政策的普遍性。我们的基准旨在鼓励研究人员提出能够在各种情况下成功概括的解决方案,这是当前RL方法失败的任务。基准的代码可在https://github.com/seawee1/driver-dojo上获得。
translated by 谷歌翻译
安全的加强学习(RL)旨在学习在将其部署到关键安全应用程序中之前满足某些约束的政策。以前的原始双重风格方法遭受了不稳定性问题的困扰,并且缺乏最佳保证。本文从概率推断的角度克服了问题。我们在政策学习过程中介绍了一种新颖的期望最大化方法来自然纳入约束:1)在凸优化(E-step)后,可以以封闭形式计算可证明的最佳非参数变异分布; 2)基于最佳变异分布(M-step),在信任区域内改进了策略参数。提出的算法将安全的RL问题分解为凸优化阶段和监督学习阶段,从而产生了更稳定的培训性能。对连续机器人任务进行的广泛实验表明,所提出的方法比基线获得了更好的约束满意度和更好的样品效率。该代码可在https://github.com/liuzuxin/cvpo-safe-rl上找到。
translated by 谷歌翻译
除了最大化奖励目标之外,现实世界中的强化学习(RL)代理商必须满足安全限制。基于模型的RL算法占据了减少不安全的现实世界行动的承诺:它们可以合成使用来自学习模型的模拟样本遵守所有约束的策略。但是,即使对于预测满足所有约束的操作,甚至可能导致真实的结构违规。我们提出了保守和自适应惩罚(CAP),一种基于模型的安全RL框架,其通过捕获模型不确定性并自适应利用它来平衡奖励和成本目标来占潜在的建模错误。首先,CAP利用基于不确定性的惩罚来膨胀预测成本。从理论上讲,我们展示了满足这种保守成本约束的政策,也可以保证在真正的环境中是可行的。我们进一步表明,这保证了在RL培训期间所有中间解决方案的安全性。此外,在使用环境中使用真正的成本反馈,帽子在培训期间自适应地调整这种惩罚。我们在基于状态和基于图像的环境中,评估了基于模型的安全RL的保守和自适应惩罚方法。我们的结果表明了样品效率的大量收益,同时产生比现有安全RL算法更少的违规行为。代码可用:https://github.com/redrew/cap
translated by 谷歌翻译
在强化学习(RL)的试验和错误机制中,我们期望学习安全的政策时出现臭名昭着的矛盾:如何学习没有足够数据和关于危险区域的先前模型的安全政策?现有方法主要使用危险行动的后期惩罚,这意味着代理人不会受到惩罚,直到体验危险。这一事实导致代理商也无法在收敛之后学习零违规政策。否则,它不会收到任何惩罚并失去有关危险的知识。在本文中,我们提出了安全设置的演员 - 评论家(SSAC)算法,它使用面向安全的能量函数或安全索引限制了策略更新。安全索引旨在迅速增加,以便潜在的危险行动,这使我们能够在动作空间上找到安全设置,或控制安全集。因此,我们可以在服用它们之前识别危险行为,并在收敛后进一步获得零限制违规政策。我们声称我们可以以类似于学习价值函数的无模型方式学习能量函数。通过使用作为约束目标的能量函数转变,我们制定了受约束的RL问题。我们证明我们基于拉格朗日的解决方案确保学习的政策将收敛到某些假设下的约束优化。在复杂的模拟环境和硬件循环(HIL)实验中评估了所提出的算法,具有来自自动车辆的真实控制器。实验结果表明,所有环境中的融合政策达到了零限制违规和基于模型的基线的相当性能。
translated by 谷歌翻译
真实世界的机器人任务需要复杂的奖励功能。当我们定义机器人需要解决的问题时,我们假装设计人员确切地指定了这种复杂的奖励,并且从那时起,它被设置为石头。然而,在实践中,奖励设计是一个迭代过程:设计师选择奖励,最终遇到奖励激励错误行为的“边缘案例”环境,修改奖励和重复。重新思考机器人问题是什么意思,正式占奖励设计的这种迭代性质?我们建议机器人不采取特定的奖励,而是对其进行不确定性,并占未来设计迭代作为未来的证据。我们贡献了辅助奖励设计方法,通过预测和影响未来的证据来加速设计过程:而不是让设计师最终遇到故障情况并修改奖励,该方法在开发阶段主动地将设计者暴露于这种环境。我们在简化的自主驾驶任务中测试此方法,并发现它通过提出当前奖励的“边缘案例”的环境,更快地提高汽车的行为。
translated by 谷歌翻译
安全的加强学习(RL)研究智能代理人不仅必须最大程度地提高奖励,而且还要避免探索不安全领域的问题。在这项研究中,我们提出了CUP,这是一种基于约束更新投影框架的新型政策优化方法,享有严格的安全保证。我们杯杯发展的核心是新提出的替代功能以及性能结合。与以前的安全RL方法相比,杯子的好处1)杯子将代孕功能推广到广义优势估计量(GAE),从而导致强烈的经验性能。 2)杯赛统一性界限,为某些现有算法提供更好的理解和解释性; 3)CUP仅通过一阶优化器提供非凸的实现,该优化器不需要在目标的凸面上进行任何强近似。为了验证我们的杯子方法,我们将杯子与在各种任务上进行的安全RL基线的全面列表进行了比较。实验表明杯子在奖励和安全限制满意度方面的有效性。我们已经在https://github.com/rl-boxes/safe-rl/tree/ main/cup上打开了杯子源代码。
translated by 谷歌翻译
In inverse reinforcement learning (IRL), a learning agent infers a reward function encoding the underlying task using demonstrations from experts. However, many existing IRL techniques make the often unrealistic assumption that the agent has access to full information about the environment. We remove this assumption by developing an algorithm for IRL in partially observable Markov decision processes (POMDPs). We address two limitations of existing IRL techniques. First, they require an excessive amount of data due to the information asymmetry between the expert and the learner. Second, most of these IRL techniques require solving the computationally intractable forward problem -- computing an optimal policy given a reward function -- in POMDPs. The developed algorithm reduces the information asymmetry while increasing the data efficiency by incorporating task specifications expressed in temporal logic into IRL. Such specifications may be interpreted as side information available to the learner a priori in addition to the demonstrations. Further, the algorithm avoids a common source of algorithmic complexity by building on causal entropy as the measure of the likelihood of the demonstrations as opposed to entropy. Nevertheless, the resulting problem is nonconvex due to the so-called forward problem. We solve the intrinsic nonconvexity of the forward problem in a scalable manner through a sequential linear programming scheme that guarantees to converge to a locally optimal policy. In a series of examples, including experiments in a high-fidelity Unity simulator, we demonstrate that even with a limited amount of data and POMDPs with tens of thousands of states, our algorithm learns reward functions and policies that satisfy the task while inducing similar behavior to the expert by leveraging the provided side information.
translated by 谷歌翻译
我们开发了一种通用机制,用于从概率的驾驶行为基础模型中生成车辆型特定路线序列。许多基础行为模型都经过了不包括车辆信息的数据培训,这些数据限制了其在下游应用程序(例如计划)中的实用性。我们的新方法有条件地将这种行为预测模型专门为媒介物类型,通过利用用于生产特定车辆控制器的增强学习算法的副产品。我们展示了如何使用通用的概率行为模型组成车辆特定的价值函数估计,以生成车辆型特定的路线序列,而这些序列序列更可能在物理上是可行的,而不是其车辆敏捷的序列。
translated by 谷歌翻译
值得信赖的强化学习算法应有能力解决挑战性的现实问题,包括{Robustly}处理不确定性,满足{安全}的限制以避免灾难性的失败,以及在部署过程中{prencepentiming}以避免灾难性的失败}。这项研究旨在概述这些可信赖的强化学习的主要观点,即考虑其在鲁棒性,安全性和概括性上的内在脆弱性。特别是,我们给出严格的表述,对相应的方法进行分类,并讨论每个观点的基准。此外,我们提供了一个前景部分,以刺激有希望的未来方向,并简要讨论考虑人类反馈的外部漏洞。我们希望这项调查可以在统一的框架中将单独的研究汇合在一起,并促进强化学习的可信度。
translated by 谷歌翻译
我们研究逆增强学习(IRL)和模仿学习(IM),这是从专家所证明的轨迹中恢复奖励或政策功能的问题。我们提出了一种新的方法来通过在最大的熵框架中添加权重功能来改善学习过程,并具有学习和恢复专家政策的随机性(或有限理性)的动机。我们的框架和算法允许学习奖励(或政策)功能以及添加到马尔可夫决策过程中的熵条款的结构,从而增强了学习过程。我们使用人类和模拟演示以及通过离散和连续的IRL/IM任务进行的数值实验表明,我们的方法表现优于先前的算法。
translated by 谷歌翻译
加强学习(RL)为决策提供了一个强大的框架,但是其实践中的应用通常需要精心设计的奖励功能。对抗性模仿学习(AIL)阐明了自动策略获取,而无需从环境中访问奖励信号。在这项工作中,我们提出了自动编码的对抗模仿学习(AEAIL),这是一个强大而可扩展的AIL框架。为了从演示中诱导专家政策,AEAIL利用自动编码器的重建误差作为奖励信号,该奖励信号比以前的基于歧视者提供了更多的优化策略信息。随后,我们使用派生的目标函数来训练自动编码器和代理策略。实验表明,与穆约科克环境中的最先进方法相比,我们的AEAIL表现优越。更重要的是,当专家演示嘈杂时,AEAIL表现出更好的鲁棒性。具体而言,我们的方法分别获得了$ 16.4 \%$ $和$ 47.2 \%$相对改进的总体,而最佳基线Fairl和PWIL分别在清洁和嘈杂的专家数据上。视频结果,开源代码和数据集可在https://sites.google.com/view/auto-encoding-imitation中找到。
translated by 谷歌翻译
安全驾驶需要人类和智能代理的多种功能,例如无法看到环境的普遍性,对周围交通的安全意识以及复杂的多代理设置中的决策。尽管强化学习取得了巨大的成功(RL),但由于缺乏集成的环境,大多数RL研究工作分别研究了每个能力。在这项工作中,我们开发了一个名为MetAdrive的新驾驶模拟平台,以支持对机器自治的可概括增强学习算法的研究。 Metadrive具有高度的组成性,可以从程序生成和实际数据导入的实际数据中产生无限数量的不同驾驶场景。基于Metadrive,我们在单一代理和多代理设置中构建了各种RL任务和基线,包括在看不见的场景,安全探索和学习多机构流量的情况下进行基准标记。对程序生成的场景和现实世界情景进行的概括实验表明,增加训练集的多样性和大小会导致RL代理的推广性提高。我们进一步评估了元数据环境中各种安全的增强学习和多代理增强学习算法,并提供基准。源代码,文档和演示视频可在\ url {https://metadriverse.github.io/metadrive}上获得。
translated by 谷歌翻译
交通模拟器是运输系统运营和计划中的重要组成部分。常规的交通模拟器通常采用校准的物理跟踪模型来描述车辆的行为及其与交通环境的相互作用。但是,没有普遍的物理模型可以准确地预测不同情况下车辆行为的模式。鉴于交通动态的非平稳性质,固定的物理模型在复杂的环境中往往不太有效。在本文中,我们将流量模拟作为一个反向加强学习问题,并提出一个参数共享对抗性逆增强学习模型,以进行动态射击模拟学习。我们提出的模型能够模仿现实世界中车辆的轨迹,同时恢复奖励功能,从而揭示了车辆的真实目标,这是不同动态的不变。关于合成和现实世界数据集的广泛实验表明,与最先进的方法相比,我们方法的出色性能及其对流量变化动态的鲁棒性。
translated by 谷歌翻译
过去半年来,从控制和强化学习社区的真实机器人部署的安全学习方法的贡献数量急剧上升。本文提供了一种简洁的但整体审查,对利用机器学习实现的最新进展,以实现在不确定因素下的安全决策,重点是统一控制理论和加固学习研究中使用的语言和框架。我们的评论包括:基于学习的控制方法,通过学习不确定的动态,加强学习方法,鼓励安全或坚固性的加固学习方法,以及可以正式证明学习控制政策安全的方法。随着基于数据和学习的机器人控制方法继续获得牵引力,研究人员必须了解何时以及如何最好地利用它们在安全势在必行的现实情景中,例如在靠近人类的情况下操作时。我们突出了一些开放的挑战,即将在未来几年推动机器人学习领域,并强调需要逼真的物理基准的基准,以便于控制和加固学习方法之间的公平比较。
translated by 谷歌翻译