在许多背景下,预测将在给定期间发起特定活动的人口中的个人数量是有用的。例如,将安装软件更新的用户数量,将在网站上使用新功能或将参与A / B测试的客户数量。在实际设置中,在分发时间内,个人存在异质性,直到它们会发起。出于这些原因,假设在连续日期观察到的新人数量是不合适的。鉴于参与初始时期的独特用户数量的观察,我们提出了一种简单但新的贝叶斯方法,用于预测随后将在随后的时间内参与的额外个人的数量。我们说明了该方法在在线实验中预测样本量的性能。
translated by 谷歌翻译
零售商的主要障碍之一是了解他们可以从合同需求响应(DR)客户期望的消费弹性。零售商提供的DR产品的目前的趋势不是消费者特定的,这对消费者在这些计划中的积极参与的额外障碍带来了额外的障碍。消费者需求行为的弹性因个人而异。该实用程序将从知识中获益,更准确地了解其价格的变化将如何修改其客户的消费模式。这项工作提出了博士签约消费者消费弹性的功能模型。该模型的目的是确定负载调整,消费者可以为不同的价格水平提供给零售商或公用事业。拟议的模型使用贝叶斯概率方法来识别实际的负载调整,单个合同的客户可以提供它可以体验的不同价格水平。发达的框架为零售商或公用事业提供了一个工具,以获得关于个人消费者如何应对不同价格水平的关键信息。这种方法能够量化消费者对DR信号作出反应的可能性,并识别各个合同的博士客户提供的实际负载调整提供他们可以体验的不同价格水平。该信息可用于最大限度地提高零售商或实用程序可以向系统运营商提供的服务的控制和可靠性。
translated by 谷歌翻译
我们应用因果机学习算法来评估营销干预措施的因果影响,即优惠券活动,对零售商的销售。除了评估不同类型的优惠券的平均影响外,我们还调查了不同客户群的因果关系效应的异质性,例如,在相对较高的客户与先前购买相对较高的客户之间。最后,我们使用最佳政策学习来确定(以数据驱动方式)哪些客户群应针对优惠券活动,以最大程度地提高营销干预措施在销售方面的有效性。我们发现,在检查的五个优惠券类别中,只有两个,即适用于药店产品和其他食品产品类别的优惠券,对零售商销售具有统计学上的显着积极影响。对小组平均治疗效果的评估表明,在商店的先前购买中定义的客户群中,优惠券提供的影响有很大的差异,药品店优惠券在先前购买较高的客户和其他食品优惠券中特别有效先前购买较低的客户。我们的研究提供了一种用例,用于在业务分析中应用因果机学习,以评估特定公司政策(例如营销活动)对决策支持的因果影响。
translated by 谷歌翻译
流行病学中的数学模型是一种不可或缺的工具,可以确定传染病的动态和重要特征。除了他们的科学价值之外,这些模型通常用于在正在进行的爆发期间提供政治决策和干预措施。然而,通过将复杂模型连接到真实数据来可靠地推断正在进行的爆发的动态仍然很难,并且需要费力的手动参数拟合或昂贵的优化方法,这些方法必须从划痕中重复给定模型的每个应用。在这项工作中,我们用专门的神经网络的流行病学建模的新组合来解决这个问题。我们的方法需要两个计算阶段:在初始训练阶段中,描述该流行病的数学模型被用作神经网络的教练,该主管是关于全球可能疾病动态的全球知识。在随后的推理阶段,训练有素的神经网络处理实际爆发的观察到的数据,并且揭示了模型的参数,以便实际地再现观察到的动态并可可靠地预测未来的进展。通过其灵活的框架,我们的仿真方法适用于各种流行病学模型。此外,由于我们的方法是完全贝叶斯的,它旨在纳入所有可用的关于合理参数值的先前知识,并返回这些参数上的完整关节后部分布。我们的方法在德国的早期Covid-19爆发阶段的应用表明,我们能够获得可靠的概率估计对重要疾病特征,例如生成时间,未检测到的感染部分,症状发作前的传播可能性,以及报告延迟非常适中的现实观测。
translated by 谷歌翻译
在环境中,从天气预报到财务预测的政治预测,未来二元成果的概率估计通常随着时间的推移而发展。例如,随着新信息可用的时间,特定日期的估计可能性在特定日变化。鉴于这种概率路径的集合,我们介绍了一个贝叶斯框架 - 我们称之为高斯潜在信息鞅,或粘合 - 用于模拟动态预测的结构随着时间的推移。例如,假设一个星期下雨的可能性是50%,并考虑两个假设情景。首先,人们希望预测同样可能成为明天的25%或75%;第二,人们预计预测将在未来几天保持不变。一个时间敏感的决策者可以在后一种情况下立即选择一个行动方案,但可能会推迟他们在前者的决定,知道新信息迫在眉睫。我们通过假设根据信息流的潜在进程的预测更新来模拟这些轨迹,从历史数据推断出来。与时间序列分析的一般方法相比,这种方法保留了诸如Martingale结构的概率路径的重要属性,以及适当的挥发性,并且更好地量化了概率路径周围的未来不确定性。我们表明光泽优于三种流行的基线方法,产生了由三种不同度量测量的更高估计的后验概率路径分布。通过阐明时间随着时间的推移来解除预测的动态结构,希望能帮助个人做出更明智的选择。
translated by 谷歌翻译
机器学习渗透到许多行业,这为公司带来了新的利益来源。然而,在人寿保险行业中,机器学习在实践中并未被广泛使用,因为在过去几年中,统计模型表明了它们的风险评估效率。因此,保险公司可能面临评估人工智能价值的困难。随着时间的流逝,专注于人寿保险行业的修改突出了将机器学习用于保险公司的利益以及通过释放数据价值带来的利益。本文回顾了传统的生存建模方法论,并通过机器学习技术扩展了它们。它指出了与常规机器学习模型的差异,并强调了特定实现在与机器学习模型家族中面对审查数据的重要性。在本文的补充中,已经开发了Python库。已经调整了不同的开源机器学习算法,以适应人寿保险数据的特殊性,即检查和截断。此类模型可以轻松地从该SCOR库中应用,以准确地模拟人寿保险风险。
translated by 谷歌翻译
We consider the problem of dynamic pricing of a product in the presence of feature-dependent price sensitivity. Developing practical algorithms that can estimate price elasticities robustly, especially when information about no purchases (losses) is not available, to drive such automated pricing systems is a challenge faced by many industries. Based on the Poisson semi-parametric approach, we construct a flexible yet interpretable demand model where the price related part is parametric while the remaining (nuisance) part of the model is non-parametric and can be modeled via sophisticated machine learning (ML) techniques. The estimation of price-sensitivity parameters of this model via direct one-stage regression techniques may lead to biased estimates due to regularization. To address this concern, we propose a two-stage estimation methodology which makes the estimation of the price-sensitivity parameters robust to biases in the estimators of the nuisance parameters of the model. In the first-stage we construct estimators of observed purchases and prices given the feature vector using sophisticated ML estimators such as deep neural networks. Utilizing the estimators from the first-stage, in the second-stage we leverage a Bayesian dynamic generalized linear model to estimate the price-sensitivity parameters. We test the performance of the proposed estimation schemes on simulated and real sales transaction data from the Airline industry. Our numerical studies demonstrate that our proposed two-stage approach reduces the estimation error in price-sensitivity parameters from 25\% to 4\% in realistic simulation settings. The two-stage estimation techniques proposed in this work allows practitioners to leverage modern ML techniques to robustly estimate price-sensitivities while still maintaining interpretability and allowing ease of validation of its various constituent parts.
translated by 谷歌翻译
We develop Bayesian neural networks (BNNs) that permit to model generic nonlinearities and time variation for (possibly large sets of) macroeconomic and financial variables. From a methodological point of view, we allow for a general specification of networks that can be applied to either dense or sparse datasets, and combines various activation functions, a possibly very large number of neurons, and stochastic volatility (SV) for the error term. From a computational point of view, we develop fast and efficient estimation algorithms for the general BNNs we introduce. From an empirical point of view, we show both with simulated data and with a set of common macro and financial applications that our BNNs can be of practical use, particularly so for observations in the tails of the cross-sectional or time series distributions of the target variables.
translated by 谷歌翻译
为了引导电子商务用户进行购买,营销人员依靠对用户何时退出而无需购买的预测。以前,此类预测是基于隐藏的马尔可夫模型(HMM),因为它们具有不同用户意图的潜在购物阶段建模的能力。在这项工作中,我们开发了持续时间依赖的隐藏马尔可夫模型。与传统的HMM相反,它明确地对潜在状态的持续时间进行了建模,从而使国家变得“粘性”。提出的模型在检测用户退出时优于先前的HMM:在不购买的100个用户退出中,它可以正确识别另外18个。这可以帮助营销人员更好地管理电子商务客户的在线行为。我们模型卓越性能的原因是持续时间依赖性,这使我们的模型能够恢复以扭曲时间感的特征的潜在状态。我们最终为此提供了理论上的解释,该解释基于“流”的概念。
translated by 谷歌翻译
我们根据机器学习,即人工智能的子场,折扣对瑞士联邦铁路发行的火车票的需求影响。考虑到基于调查的超级票的买家样本,我们调查了哪些客户或旅行相关的特征(包括折现率)预测购买行为,即:预订旅行,否则未通过火车实现,而不是第二次购买 - 售票或重新安排旅行时(例如,远离高峰时间),当时被提供超级票时。预测机器学习表明,客户的年龄,与特定连接的需求相关信息(例如出发时间和利用率)以及折现水平允许在一定程度上预测购买行为。此外,我们使用因果机学习来评估折现率对重新安排旅行的影响,这似乎是根据高峰时间的容量限制而相关的。假设(i)折现率是基于我们丰富的特征的准随机,(ii)购买决策以折现率单调较弱,我们确定了“始终购买者”的折现率的效果,谁会旅行。即使没有折扣,也要根据我们的调查,该调查在没有折扣的情况下询问客户行为。我们发现,平均而言,将折现率提高一个百分点会使重新安排的旅行的份额增加0.16个百分点,但总是买家。研究效果的异质性在观察物中的异质性表明,在控制其他几个特征时,休闲旅行者以及高峰时段的效果较高。
translated by 谷歌翻译
预测流感病毒引起的住院治疗对于公共卫生计划至关重要,因此医院可以为大量患者做好准备。在流感季节中实时使用了许多预测方法,并提交给疾病预防控制中心进行公共交流。预测模型范围从机械模型和自动回归模型到机器学习模型。我们假设我们可以通过使用多个机械模型生成潜在的轨迹并使用机器学习来学习如何将这些轨迹结合到改进的预测中,从而改善预测。我们提出了一种树木合奏模型设计,该设计利用基线模型Sikjalpha的各个预测指标来提高其性能。每个预测因子都是通过更改一组超参数来生成的。我们将为Flusight Challenge(2022)部署的前瞻性预测与所有其他提交的方法进行了比较。我们的方法是完全自动化的,不需要任何手动调整。我们证明,基于森林的随机方法能够根据平均绝对误差,覆盖范围和加权间隔得分来改善单个预测因子的预测。我们的方法根据平均绝对误差和基于当前季节所有每周提交的平均值(2022)的平均值来优于所有其他模型。随机森林(通过对树木的分析)的解释能力使我们能够深入了解其如何改善单个预测因子。
translated by 谷歌翻译
了解Covid-19的传播是众多研究的主题,突出了可靠的流行模型的重要性。在这里,我们使用带有时间协变量的潜在霍克斯工艺引入了一种新型的流行模型,用于建模感染。与其他模型不同,我们通过基础霍克斯过程驱动的概率分布进行对报告的案例进行建模。通过霍克斯过程对感染进行建模,使我们能够估计受感染的人感染的人。我们提出了一个内核密度颗粒滤波器(KDPF),以推断潜在病例和繁殖数,并在不久的将来预测新病例。计算工作与感染的数量成正比,使使用粒子滤波器类型算法(例如KDPF)成为可能。我们证明了拟议的算法对合成数据集的性能,而Covid-19报告了英国各个地方当局的病例,并将我们的模型基于替代方法。
translated by 谷歌翻译
本文开发了贝叶斯因果林的稀疏诱导版本,最近提出的非参数因果回归模型采用贝叶斯添加剂回归树,专门设计用于使用观察数据来估计异质治疗效果。我们介绍的稀疏诱导组件是通过实证研究的动机,其中不是所有可用的协变量相关的,导致在估计个体治疗效果的兴趣表面底层的不同程度。在这项工作中提供的扩展版本,我们命名贝叶斯因果森林,配备了一对允许模型通过树集合中的相应数量的分裂调节每个协变量的重量。这些前瞻改善了模型对稀疏数据产生过程的适应性,并且允许在治疗效果估计的框架中进行完全贝叶斯特征缩收,从而揭示推动异质性的调节因子。此外,该方法允许先前了解相关的混杂协变量和对模型中掺入结果的影响的相对幅度。我们说明了我们在模拟研究中的方法的表现,与贝叶斯因果林和其他最先进的模型相比,展示如何与越来越多的协变量以及其如何处理强烈混淆的情景。最后,我们还提供了使用真实数据的应用程序的示例。
translated by 谷歌翻译
在许多行业中,客户流失预测是一项宝贵的任务。在电信中,鉴于数据的高维度以及确定潜在的挫败感签名是多么困难,这可能代表了关于未来流失行为的重要驱动因素。在这里,我们提出了一个新颖的贝叶斯分层联合模型,该模型能够根据不同电视观看旅程中发生的事件以及事件之间需要多长时间来表征客户资料。该模型大幅度地将数据的维度从每个客户的数千个观察值降低到11个客户级参数估计和随机效果。我们使用来自40个BT客户(有20名活跃和20名最终取消订阅的20人)的数据测试我们的方法,他们的电视观看行为是从2019年10月到2019年12月的,总计约为半百万。使用贝叶斯分层模型的参数估计和随机效应采用不同的机器学习技术,作为在验证中与100 \%真实的正率和14 \%的假正率相关的最高92 \%精度可预测流失的精度放。我们提出的方法是降低数据维度的有效方法,同时保持了高描述性和预测能力。我们提供代码以在https://github.com/rafamoral/profiling_tv_watching_behaviour上实现贝叶斯模型。
translated by 谷歌翻译
近期不同尺度电力消耗的丰富数据开辟了新的挑战,并强调了新技术的需求,以利用更精细的尺度提供的信息,以便改善更广泛的尺度预测。在这项工作中,我们利用该分层预测问题与多尺度传输学习之间的相似性。我们分别开发了两种分层转移学习方法,分别基于广义添加剂模型和随机林的堆叠,以及专家聚合的使用。我们将这些方法应用于在第一种情况下使用智能仪表数据,以及第二种情况下的区域数据的智能仪表数据将这些方法应用于两种电力负荷预测。对于这两个useCases,我们将我们的方法的表现与基准算法的表演进行比较,我们使用可变重要性分析调查其行为。我们的结果表明了两种方法的兴趣,这导致预测的重大改善。
translated by 谷歌翻译
产品捆绑是在线零售中使用的一种常见销售机制。为了设定有利可图的捆绑价格,卖方需要从交易数据中学习消费者的偏好。当客户购买捆绑包或多种产品时,不能使用经典方法(例如离散选择模型)来估计客户的估值。在本文中,我们提出了一种使用捆绑销售数据来了解消费者对产品的估值的方法。该方法将其降低为估计问题,其中样品由多面体区域审查。使用EM算法和蒙特卡洛模拟,我们的方法可以收回消费者估值的分布。该框架允许未观察到的无购买和集群市场细分。我们提供有关概率模型的可识别性和EM算法的收敛性的理论结果。该方法的性能也被数值证明。
translated by 谷歌翻译
We introduce an ensemble learning method based on Gaussian Process Regression (GPR) for predicting conditional expected stock returns given stock-level and macro-economic information. Our ensemble learning approach significantly reduces the computational complexity inherent in GPR inference and lends itself to general online learning tasks. We conduct an empirical analysis on a large cross-section of US stocks from 1962 to 2016. We find that our method dominates existing machine learning models statistically and economically in terms of out-of-sample $R$-squared and Sharpe ratio of prediction-sorted portfolios. Exploiting the Bayesian nature of GPR, we introduce the mean-variance optimal portfolio with respect to the predictive uncertainty distribution of the expected stock returns. It appeals to an uncertainty averse investor and significantly dominates the equal- and value-weighted prediction-sorted portfolios, which outperform the S&P 500.
translated by 谷歌翻译
学习条件密度和识别影响整个分布的因素是数据驱动应用程序中的重要任务。常规方法主要与摘要统计数据合作,因此不足以进行全面的调查。最近,关于功能回归方法的发展,将密度曲线作为功能结果建模。开发此类模型的一个主要挑战在于非阴性的固有约束和密度结果功能空间的单位积分。为了克服这个基本问题,我们建议Wasserstein分销学习(WDL),这是一个柔性在尺度回归建模框架,始于Wasserstein距离$ W_2 $,作为密度结果空间的适当指标。然后,我们将半参数条件高斯混合模型(SCGMM)作为模型类$ \ mathfrak {f} \ otimes \ Mathcal {t} $作为模型类$ \ mathfrak {scgmm)介绍。生成的度量空间$(\ Mathfrak {f} \ otimes \ Mathcal {t},W_2)$满足所需的约束,并提供密集且封闭的功能子空间。为了拟合所提出的模型,我们基于增强树的大量最小化优化进一步开发了有效的算法。与以前的文献中的方法相比,WDL更好地表征了条件密度的非线性依赖性及其得出的摘要统计。我们通过模拟和现实世界应用来证明WDL框架的有效性。
translated by 谷歌翻译
我们提出了一种使用边缘似然的分布式贝叶斯模型选择的一般方法,其中数据集被分开在非重叠子集中。这些子集仅由个别工人本地访问,工人之间没有共享数据。我们近似通过在每个子集的每个子集上从后部采样通过Monte Carlo采样的完整数据的模型证据。结果使用一种新的方法来组合,该方法校正使用所产生的样本的汇总统计分裂。我们的鸿沟和征服方法使贝叶斯模型在大型数据设置中选择,利用所有可用信息,而是限制工人之间的沟通。我们派生了理论误差界限,这些错误界限量化了计算增益与精度损失之间的结果。当我们的真实世界实验所示,令人尴尬的平行性质在大规模数据集时产生了重要的速度。此外,我们展示了如何在可逆跳转设置中扩展建议的方法以在可逆跳转设置中进行模型选择,该跳转设置在一个运行中探讨多个特征组合。
translated by 谷歌翻译
本文介绍了贝叶斯回归对建筑时间序列模型的使用和堆叠不同预测模型的时间序列。分析了利用贝叶斯回归与非线性趋势的时间序列建模。这种方法使得可以估计时间序列预测的不确定性并计算风险特征的价值。考虑了使用贝叶斯回归的时间序列的分层模型。在这种方法中,对于所有数据样本,一组参数是相同的,对于不同的数据样本,其他参数可以不同。这样的方法允许在指定时间序列的短期数据的情况下使用该模型,例如,在销售预测问题的新商店或新产品的情况下。在预测模型堆叠的研究中,模型Arima,神经网络,随机森林,额外的树用于对第一级模型集合的预测。在第二级,验证集上这些模型的时间序列预测用于贝叶斯回归堆叠。这种方法给出了这些模型的回归系数的分布。它可以估计每个模型对堆叠结果贡献的不确定性。有关这些分布的信息允许我们选择最佳的堆叠模型集,同时考虑到域知识。堆叠预测模型的概率方法使我们能够对决策过程中重要的预测进行风险评估。
translated by 谷歌翻译