许多工业和安全应用程序采用套件传感器,用于检测时间行为模式的突然变化。这些突然的变化通常在本地显现,只渲染一个小型传感器信息。由于资源约束,每个传感器的连续监视可能是昂贵的,并且作为强盗最快转换点检测问题的动机,其中顺序地选择感测动作(或传感器),并且仅观察到对应于所选动作的测量。我们在有限的有限参数化概率分布的一般类别的检测延迟上获得了一个信息 - 理论下限。然后,我们提出了一种计算上有效的在线传感方案,这无缝地平衡了对不同传感选项的需求,利用查询信息行动。我们推导出拟议方案的预期延误界限,并表明这些界限在低误报率下以低误报率下限,建立了所提出的方法的最优性。然后,我们对合成和实时数据集进行了许多实验,证明了我们提出的方法的有效性。
translated by 谷歌翻译
我们探索了一个新的强盗实验模型,其中潜在的非组织序列会影响武器的性能。上下文 - 统一算法可能会混淆,而那些执行正确的推理面部信息延迟的算法。我们的主要见解是,我们称之为Deconfounst Thompson采样的算法在适应性和健壮性之间取得了微妙的平衡。它的适应性在易于固定实例中带来了最佳效率,但是在硬性非平稳性方面显示出令人惊讶的弹性,这会导致其他自适应算法失败。
translated by 谷歌翻译
我们通过审查反馈重复进行一定的第一价格拍卖来研究在线学习,在每次拍卖结束时,出价者只观察获胜的出价,学会了适应性地出价,以最大程度地提高她的累积回报。为了实现这一目标,投标人面临着一个具有挑战性的困境:如果她赢得了竞标 - 获得正收益的唯一方法 - 然后她无法观察其他竞标者的最高竞标,我们认为我们认为这是从中汲取的。一个未知的分布。尽管这一困境让人联想到上下文强盗中的探索探索折衷权,但现有的UCB或汤普森采样算法无法直接解决。在本文中,通过利用第一价格拍卖的结构属性,我们开发了第一个实现$ o(\ sqrt {t} \ log^{2.5} t)$ hearry bund的第一个学习算法(\ sqrt {t} \ log^{2.5} t),这是最小值的最低$ $ \ log $因素,当投标人的私人价值随机生成时。我们这样做是通过在一系列问题上提供算法,称为部分有序的上下文匪徒,该算法将图形反馈跨动作,跨环境跨上下文进行结合,以及在上下文中的部分顺序。我们通过表现出一个奇怪的分离来确定该框架的优势和劣势,即在随机环境下几乎可以独立于动作/背景规模的遗憾,但是在对抗性环境下是不可能的。尽管这一通用框架有限制,但我们进一步利用了第一价格拍卖的结构,并开发了一种学习算法,该算法在存在对手生成的私有价值的情况下,在存在的情况下可以有效地运行样本(并有效地计算)。我们建立了一个$ o(\ sqrt {t} \ log^3 t)$遗憾,以此为此算法,因此提供了对第一价格拍卖的最佳学习保证的完整表征。
translated by 谷歌翻译
This paper studies offline policy learning, which aims at utilizing observations collected a priori (from either fixed or adaptively evolving behavior policies) to learn an optimal individualized decision rule that achieves the best overall outcomes for a given population. Existing policy learning methods rely on a uniform overlap assumption, i.e., the propensities of exploring all actions for all individual characteristics are lower bounded in the offline dataset; put differently, the performance of the existing methods depends on the worst-case propensity in the offline dataset. As one has no control over the data collection process, this assumption can be unrealistic in many situations, especially when the behavior policies are allowed to evolve over time with diminishing propensities for certain actions. In this paper, we propose a new algorithm that optimizes lower confidence bounds (LCBs) -- instead of point estimates -- of the policy values. The LCBs are constructed using knowledge of the behavior policies for collecting the offline data. Without assuming any uniform overlap condition, we establish a data-dependent upper bound for the suboptimality of our algorithm, which only depends on (i) the overlap for the optimal policy, and (ii) the complexity of the policy class we optimize over. As an implication, for adaptively collected data, we ensure efficient policy learning as long as the propensities for optimal actions are lower bounded over time, while those for suboptimal ones are allowed to diminish arbitrarily fast. In our theoretical analysis, we develop a new self-normalized type concentration inequality for inverse-propensity-weighting estimators, generalizing the well-known empirical Bernstein's inequality to unbounded and non-i.i.d. data.
translated by 谷歌翻译
考虑$ k $过程,每个过程都会生成一系列相同和独立的随机变量。这些过程的概率度量具有必须估计的随机参数。具体而言,它们共享一个参数$ \ theta $,所有概率度量共同。此外,每个过程$ i \ in \ {1,\ dots,k \} $都有一个私有参数$ \ alpha_i $。目的是设计一种主动采样算法,以顺序估算这些参数,以形成所有样品数量最少的共享和私有参数的可靠估计。该采样算法具有三个关键组件:(i)〜数据驱动的采样决策,随着时间的推移,该决策逐渐指定应选择哪些$ k $过程进行采样; (ii)〜停止该过程的时间,该过程指定何时累积数据足以形成可靠的估计并终止采样过程; (iii)〜所有共享和私人参数的估计器。由于已知的顺序估计在分析上是棘手的,因此本文采用\ emph {条件}估计成本函数,从而导致了顺序估计方法,该方法最近被证明可以进行拖延分析。划定了渐近的最佳决策规则(采样,停止和估计),并提供了数值实验,以将所提出的程序的疗效和质量与相关方法进行比较。
translated by 谷歌翻译
在线学习算法广泛用于网络上的搜索和内容优化,必须平衡探索和开发,可能牺牲当前用户的经验,以获得将来会导致未来更好决策的信息。虽然在最坏的情况下,与贪婪算法相比,显式探索具有许多缺点,其通过选择当前看起来最佳的动作始终“利用”。我们在数据中固有的多样性的情况下提出了明确的探索不必要。我们在最近的一系列工作中进行了线性上下围匪盗模型中贪婪算法的平滑分析。我们提高了先前的结果,表明,只要多样性条件保持,贪婪的方法几乎符合任何其他算法的最佳可能性贝叶斯遗憾率,并且这种遗憾是最多的$ \ tilde o(t ^ {1/ 3})$。
translated by 谷歌翻译
主动学习可以减少执行假设测试所需的样本数量并估计模型的参数。在本文中,我们重新审视Chernoff的作品,所述工作描述了用于执行假设测试的渐近最佳算法。我们获得了对Chernoff的算法的新颖性复杂性,具有非渐近术语,其在固定置信水平处具有其性能。我们还开发了Chernoff采样的延伸,可用于估计各种模型的参数,并且我们在估计误差上获得非渐近绑定。我们将延长Chernoff采样延伸,积极学习神经网络模型,并估算实际数据线性和非线性回归问题中的参数,其中我们的方法有利地对最先进的方法执行。
translated by 谷歌翻译
我们研究了在高维稀疏线性上下文匪徒中动态批处理学习的问题,在给定的最大批量约束下,决策者在每个批次结束时只能观察奖励,可以动态地决定如何进行奖励。许多人将包括在下一批中(在当前批次结束时)以及每批采用哪些个性化行动选择方案。在各种实际情况下,这种批处理的限制无处不在,包括在临床试验中的营销和医疗选择中的个性化产品。我们通过后悔的下限表征了此问题中的基本学习限制,并提供了匹配的上限(直至日志因素),从而为此问题开了最佳方案。据我们所知,我们的工作为在高维稀疏线性上下文匪徒中对动态批处理学习的理论理解提供了第一个侵入。值得注意的是,即使我们的结果的一种特殊情况 - 当不存在批处理约束时 - 都会产生简单的无探索算法使用Lasso估算器,已经达到了在高维线性匪板中为标准在线学习的最小值最佳遗憾(对于No-Cargin情况),在高维上下文Bandits的新兴文献中似乎未知。
translated by 谷歌翻译
我们考虑激励探索:一种多臂匪徒的版本,其中武器的选择由自私者控制,而算法只能发布建议。该算法控制信息流,信息不对称可以激励代理探索。先前的工作达到了最佳的遗憾率,直到乘法因素,这些因素根据贝叶斯先验而变得很大,并在武器数量上成倍规模扩展。采样每只手臂的一个更基本的问题一旦遇到了类似的因素。我们专注于激励措施的价格:出于激励兼容的目的,绩效的损失,广泛解释为。我们证明,如果用足够多的数据点初始化,则标准的匪徒汤普森采样是激励兼容的。因此,当收集这些数据点时,由于激励措施的绩效损失仅限于初始回合。这个问题主要降低到样本复杂性的问题:需要多少个回合?我们解决了这个问题,提供了匹配的上限和下限,并在各种推论中实例化。通常,最佳样品复杂性在“信念强度”中的武器数量和指数中是多项式。
translated by 谷歌翻译
在因果推理和强盗文献中,基于观察数据的线性功能估算线性功能的问题是规范的。我们分析了首先估计治疗效果函数的广泛的两阶段程序,然后使用该数量来估计线性功能。我们证明了此类过程的均方误差上的非反应性上限:这些边界表明,为了获得非反应性最佳程序,应在特定加权$ l^2 $中最大程度地估算治疗效果的误差。 -规范。我们根据该加权规范的约束回归分析了两阶段的程序,并通过匹配非轴突局部局部最小值下限,在有限样品中建立了实例依赖性最优性。这些结果表明,除了取决于渐近效率方差之外,最佳的非质子风险除了取决于样本量支持的最富有函数类别的真实结果函数与其近似类别之间的加权规范距离。
translated by 谷歌翻译
本文在动态定价的背景下调查预先存在的离线数据对在线学习的影响。我们在$ t $期间的销售地平线上研究单一产品动态定价问题。每个时段的需求由产品价格根据具有未知参数的线性需求模型确定。我们假设在销售地平线开始之前,卖方已经有一些预先存在的离线数据。离线数据集包含$ N $示例,其中每个标准是由历史价格和相关的需求观察组成的输入输出对。卖方希望利用预先存在的离线数据和顺序在线数据来最大限度地减少在线学习过程的遗憾。我们的特征在于在线学习过程的最佳遗憾的脱机数据的大小,位置和分散的联合效果。具体而言,离线数据的大小,位置和色散由历史样本数量为$ n $,平均历史价格与最佳价格$ \ delta $之间的距离以及历史价格的标准差价Sigma $分别。我们表明最佳遗憾是$ \ widetilde \ theta \ left(\ sqrt {t} \ wedge \ frac {t} {(n \ wedge t)\ delta ^ 2 + n \ sigma ^ 2} \右)$,基于“面对不确定性”原则的“乐观主义”的学习算法,其遗憾是最佳的对数因子。我们的结果揭示了对脱机数据的大小的最佳遗憾率的惊人变换,我们称之为阶段转型。此外,我们的结果表明,离线数据的位置和分散也对最佳遗憾具有内在效果,我们通过逆平面法量化了这种效果。
translated by 谷歌翻译
在臂分布的标准假设下广泛研究了随机多臂强盗问题(例如,用已知的支持,指数家庭等)。这些假设适用于许多现实世界问题,但有时他们需要知识(例如,在尾部上),从业者可能无法精确访问,提高强盗算法的鲁棒性的问题,以模拟拼盘。在本文中,我们研究了一种通用的Dirichlet采样(DS)算法,基于通过重新采样的武器观测和数​​据相关的探索奖励计算的经验指标的成对比较。我们表明,当该策略的界限和对数后悔具有轻度分量度条件的半界分布时,这种策略的不同变体达到了可证明的最佳遗憾。我们还表明,一项简单的调整在大类无界分布方面实现了坚固性,其成本比对数渐近的遗憾略差。我们终于提供了数字实验,展示了合成农业数据的决策问题中DS的优点。
translated by 谷歌翻译
本文介绍了信息性多臂强盗(IMAB)模型,在每个回合中,玩家选择手臂,观察符号,并以符号的自我信息形式获得未观察到的奖励。因此,手臂的预期奖励是产生其符号的源质量函数的香农熵。玩家的目标是最大程度地提高与武器的熵值相关的预期奖励。在假设字母大小是已知的假设下,为IMAB模型提出了两种基于UCB的算法,该算法考虑了插件熵估计器的偏差。第一种算法在熵估计中乐观地纠正了偏置项。第二算法依赖于数据依赖性置信区间,该置信区间适应具有较小熵值的源。性能保证是通过上限为每种算法的预期遗憾提供的。此外,在Bernoulli案例中,将这些算法的渐近行为与伪遗憾的Lai-Robbins的下限进行了比较。此外,在假设\ textit {cract}字母大小的假设下是未知的,而播放器仅知道其上方的宽度上限,提出了一种基于UCB的算法,在其中,玩家的目的是减少由该算法造成的遗憾。未知的字母尺寸在有限的时间方面。数字结果说明了论文中介绍的算法的预期遗憾。
translated by 谷歌翻译
积极的学习方法在减少学习所需的样本数量方面表现出了巨大的希望。随着自动化学习系统被采用到实时的现实世界决策管道中,越来越重要的是,这种算法的设计考虑到了安全性。在这项工作中,我们研究了在互动环境中学习最佳安全决定的复杂性。我们将这个问题减少到约束的线性匪徒问题,我们的目标是找到满足某些(未知)安全限制的最佳手臂。我们提出了一种基于自适应的实验性设计算法,在显示ARM的难度与次优的难度之间,我们表现出了有效的交易。据我们所知,我们的结果是具有安全限制的线性匪徒最佳武器识别。实际上,我们证明了这种方法在合成和现实世界数据集上的表现很好。
translated by 谷歌翻译
级别设置估计问题旨在查找域$ {\ cal x} $的所有点,其中一个未知函数$ f:{\ cal x} \ lightarrow \ mathbb {r} $超过阈值$ \ alpha $ 。估计基于可以在$ {\ cal x} $中顺序和自适应地选择的位置获取的嘈杂函数评估。阈值$ \ alpha $可以是\弹性{显式},并提供先验,或\ \ ich {隐式},相对于最佳函数值定义,即$ \ alpha =(1- \ epsilon)f(x_ \ AST)$关于给定$ \ epsilon> 0 $ why $ f(x_ \ ist)$是最大函数值,并且未知。在这项工作中,我们通过将其与最近的自适应实验设计方法相关联,为近期自适应实验设计方法提供了一种新的再现内核盗窃空间(RKHS)设置。我们假设可以通过RKHS中的函数近似于未知的拼写,并为此设置中隐含和显式案件提供新的算法,具有很强的理论保证。此外,在线性(内核)设置中,我们表明我们的界限几乎是最佳的,即,我们的上限与阈值线性匪徒的现有下限匹配。据我们所知,这项工作提供了第一个实例依赖性非渐近的上限,就匹配信息理论下限的水平设定估计的样本复杂性。
translated by 谷歌翻译
我们研究了情节块MDP中模型估计和无奖励学习的问题。在这些MDP中,决策者可以访问少数潜在状态产生的丰富观察或上下文。我们首先对基于固定行为策略生成的数据估算潜在状态解码功能(从观测到潜在状态的映射)感兴趣。我们在估计此功能的错误率上得出了信息理论的下限,并提出了接近此基本限制的算法。反过来,我们的算法还提供了MDP的所有组件的估计值。然后,我们研究在无奖励框架中学习近乎最佳政策的问题。根据我们有效的模型估计算法,我们表明我们可以以最佳的速度推断出策略(随着收集样品的数量增长大)的最佳策略。有趣的是,我们的分析提供了必要和充分的条件,在这些条件下,利用块结构可以改善样本复杂性,以识别近乎最佳的策略。当满足这些条件时,Minimax无奖励设置中的样本复杂性将通过乘法因子$ n $提高,其中$ n $是可能的上下文数量。
translated by 谷歌翻译
强化学习通常假设代理人立即观察其动作的反馈,但在许多实际应用中(如推荐系统),延迟观察到反馈。本文在线学习在线学习,具有未知过渡,过渡性的成本和不受限制的延迟反馈,在线学习。也就是说,集中的成本和轨迹只在第k + d ^ k $的集中延迟到学习者,其中延迟$ d ^ k $既不相同也不有界限,并由其中选择忘记的对手。我们提出了基于策略优化的新型算法,该算法在全信息反馈下实现了$ \ sqrt {k + d} $的近乎最佳的高概率遗憾,其中$ k $是剧集的数量和$ d = \ sum_ {k D ^ K $是总延迟。在强盗反馈下,我们证明了类似$ \ SQRT {K + D} $遗憾假设成本是随机的,而在一般情况下为$(k + d)^ {2/3} $遗憾。我们是第一个在具有延迟反馈的MDP的重要设置中考虑后悔最小化。
translated by 谷歌翻译
We study bandit model selection in stochastic environments. Our approach relies on a meta-algorithm that selects between candidate base algorithms. We develop a meta-algorithm-base algorithm abstraction that can work with general classes of base algorithms and different type of adversarial meta-algorithms. Our methods rely on a novel and generic smoothing transformation for bandit algorithms that permits us to obtain optimal $O(\sqrt{T})$ model selection guarantees for stochastic contextual bandit problems as long as the optimal base algorithm satisfies a high probability regret guarantee. We show through a lower bound that even when one of the base algorithms has $O(\log T)$ regret, in general it is impossible to get better than $\Omega(\sqrt{T})$ regret in model selection, even asymptotically. Using our techniques, we address model selection in a variety of problems such as misspecified linear contextual bandits, linear bandit with unknown dimension and reinforcement learning with unknown feature maps. Our algorithm requires the knowledge of the optimal base regret to adjust the meta-algorithm learning rate. We show that without such prior knowledge any meta-algorithm can suffer a regret larger than the optimal base regret.
translated by 谷歌翻译
我们考虑使用$ K $臂的随机匪徒问题,每一个都与$ [m,m] $范围内支持的有限分布相关。我们不认为$ [m,m] $是已知的范围,并表明学习此范围有成本。确实,出现了与分销相关和无分配后悔界限之间的新权衡,这阻止了同时实现典型的$ \ ln t $和$ \ sqrt {t} $ bunds。例如,仅当与分布相关的遗憾界限至少属于$ \ sqrt {t} $的顺序时,才能实现$ \ sqrt {t} $}无分布遗憾。我们展示了一项策略,以实现新的权衡表明的遗憾。
translated by 谷歌翻译
在随着时间变化的组合环境中的在线决策激励,我们研究了将离线算法转换为其在线对应物的问题。我们专注于使用贪婪算法对局部错误的贪婪算法进行恒定因子近似的离线组合问题。对于此类问题,我们提供了一个通用框架,该框架可有效地将稳健的贪婪算法转换为使用Blackwell的易近算法。我们证明,在完整信息设置下,由此产生的在线算法具有$ O(\ sqrt {t})$(近似)遗憾。我们进一步介绍了Blackwell易接近性的强盗扩展,我们称之为Bandit Blackwell的可接近性。我们利用这一概念将贪婪的稳健离线算法转变为匪(t^{2/3})$(近似)$(近似)的遗憾。展示了我们框架的灵活性,我们将脱机之间的转换应用于收入管理,市场设计和在线优化的几个问题,包括在线平台中的产品排名优化,拍卖中的储备价格优化以及supperular tossodular最大化。 。我们还将还原扩展到连续优化的类似贪婪的一阶方法,例如用于最大化连续强的DR单调下调功能,这些功能受到凸约束的约束。我们表明,当应用于这些应用程序时,我们的转型会导致新的后悔界限或改善当前已知界限。我们通过为我们的两个应用进行数值模拟来补充我们的理论研究,在这两种应用中,我们都观察到,转换的数值性能在实际情况下优于理论保证。
translated by 谷歌翻译