本文介绍了一种用于检测变更点的算法,并鉴定了瞬态多元时间序列数据(MTSD)中相应的子序列。由于许多工业领域的可用性增加,对此类数据的分析变得越来越重要。用于基于训练条件的维护(CBM)模型的标签,排序或过滤高度瞬态测量数据很麻烦且容易出错。对于某些应用程序,可以通过简单阈值或基于平均值和变化的变化找到更改点来过滤测量值。但是,例如,组件组中组件的强大诊断,该组件在多个传感器值之间具有复杂的非线性相关性,简单的方法是不可行的。可以将CBM模型出现的有意义且相干的测量数据。因此,我们介绍了一种使用基于复发的神经网络(RNN)自动编码器(AE)的算法,该算法对传入数据进行了迭代训练。评分函数使用重建误差和潜在空间信息。保存了确定的子序列的模型,并用于识别重复子序列以及快速离线聚类。为了进行评估,我们提出了一种基于曲率的新相似性度量,以实现更直观的时间序列子序列聚类指标。与其他七种最先进的算法和八个数据集进行了比较,显示了我们算法对在线群集MTSD和与机电系统结合的群集MTSD的功能和性能的提高。
translated by 谷歌翻译
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
translated by 谷歌翻译
紧凑和节能的可穿戴传感器的发展导致生物信号的可用性增加。为了分析这些连续记录的,通常是多维的时间序列,能够进行有意义的无监督数据分割是一个吉祥的目标。实现这一目标的一种常见方法是将时间序列中的变更点确定为分割基础。但是,传统的更改点检测算法通常带有缺点,从而限制了其现实世界的适用性。值得注意的是,他们通常依靠完整的时间序列可用,因此不能用于实时应用程序。另一个常见的限制是,它们处理多维时间序列的分割(或无法)。因此,这项工作的主要贡献是提出一种新型的无监督分段算法,用于多维时间序列,名为潜在空间无监督的语义细分(LS-USS),该算法旨在轻松地与在线和批处理数据一起使用。在将LS-USS与其他最先进的更改点检测算法进行比较时,在各种现实世界数据集上,在离线和实时设置中,LS-USS在PAR或更好的性能上都可以系统地实现。
translated by 谷歌翻译
TimeSeries Partitioning是大多数机器学习驱动的传感器的IOT应用程序的重要步骤。本文介绍了一种采样效率,鲁棒,时序分割模型和算法。我们表明,通过基于最大平均差异(MMD)的分割目标来学习特定于分割目标的表示,我们的算法可以鲁布布地检测不同应用程序的时间序列事件。我们的损耗功能允许我们推断是否从相同的分布(空假设)中绘制了连续的样本序列,并确定拒绝零假设的对之间的变化点(即,来自不同的分布)。我们展示了其在基于环境传感的活动识别的实际IOT部署中的适用性。此外,虽然文献中存在许多关于变更点检测的作品,但我们的模型明显更简单,匹配或优于最先进的方法。我们可以平均地在9-93秒内完全培训我们的模型,而在不同应用程序上的数据的差异很小。
translated by 谷歌翻译
异常值是一个事件或观察,其被定义为不同于距群体的不规则距离的异常活动,入侵或可疑数据点。然而,异常事件的定义是主观的,取决于应用程序和域(能量,健康,无线网络等)。重要的是要尽可能仔细地检测异常事件,以避免基础设施故障,因为异常事件可能导致对基础设施的严重损坏。例如,诸如微电网的网络物理系统的攻击可以发起电压或频率不稳定性,从而损坏涉及非常昂贵的修复的智能逆变器。微电网中的不寻常活动可以是机械故障,行为在系统中发生变化,人体或仪器错误或恶意攻击。因此,由于其可变性,异常值检测(OD)是一个不断增长的研究领域。在本章中,我们讨论了使用AI技术的OD方法的进展。为此,通过多个类别引入每个OD模型的基本概念。广泛的OD方法分为六大类:基于统计,基于距离,基于密度的,基于群集的,基于学习的和合奏方法。对于每个类别,我们讨论最近最先进的方法,他们的应用领域和表演。之后,关于对未来研究方向的建议提供了关于各种技术的优缺点和挑战的简要讨论。该调查旨在指导读者更好地了解OD方法的最新进展,以便保证AI。
translated by 谷歌翻译
近年来,随着传感器和智能设备的广泛传播,物联网(IoT)系统的数据生成速度已大大增加。在物联网系统中,必须经常处理,转换和分析大量数据,以实现各种物联网服务和功能。机器学习(ML)方法已显示出其物联网数据分析的能力。但是,将ML模型应用于物联网数据分析任务仍然面临许多困难和挑战,特别是有效的模型选择,设计/调整和更新,这给经验丰富的数据科学家带来了巨大的需求。此外,物联网数据的动态性质可能引入概念漂移问题,从而导致模型性能降解。为了减少人类的努力,自动化机器学习(AUTOML)已成为一个流行的领域,旨在自动选择,构建,调整和更新机器学习模型,以在指定任务上实现最佳性能。在本文中,我们对Automl区域中模型选择,调整和更新过程中的现有方法进行了审查,以识别和总结将ML算法应用于IoT数据分析的每个步骤的最佳解决方案。为了证明我们的发现并帮助工业用户和研究人员更好地实施汽车方法,在这项工作中提出了将汽车应用于IoT异常检测问题的案例研究。最后,我们讨论并分类了该领域的挑战和研究方向。
translated by 谷歌翻译
在智能交通系统中,交通拥堵异常检测至关重要。运输机构的目标有两个方面:监视感兴趣领域的一般交通状况,并在异常拥堵状态下定位道路细分市场。建模拥塞模式可以实现这些目标,以实现全市道路的目标,相当于学习多元时间序列(MTS)的分布。但是,现有作品要么不可伸缩,要么无法同时捕获MTS中的空间信息。为此,我们提出了一个由数据驱动的生成方法组成的原则性和全面的框架,该方法可以执行可拖动的密度估计来检测流量异常。我们的方法在特征空间中的第一群段段,然后使用条件归一化流以在无监督的设置下在群集级别识别异常的时间快照。然后,我们通过在异常群集上使用内核密度估计器来识别段级别的异常。关于合成数据集的广泛实验表明,我们的方法在召回和F1得分方面显着优于几种最新的拥塞异常检测和诊断方法。我们还使用生成模型来采样标记的数据,该数据可以在有监督的环境中训练分类器,从而减轻缺乏在稀疏设置中进行异常检测的标记数据。
translated by 谷歌翻译
检测数据分布突然变化的变更点检测(CPD)被认为是时间序列分析中最重要的任务之一。尽管关于离线CPD的文献广泛,但无监督的在线CPD仍面临主要挑战,包括可扩展性,超参数调整和学习限制。为了减轻其中一些挑战,在本文中,我们提出了一种新颖的深度学习方法,用于从多维时间序列中无监督的在线CPD,名为Adaptive LSTM-AUTOENOCODER变更点检测(ALACPD)。 ALACPD利用了基于LSTM-AutoEncoder的神经网络来执行无监督的在线CPD。它连续地适应了传入的样本,而无需保留先前接收的输入,因此没有内存。我们对几个实际时间序列的CPD基准进行了广泛的评估。我们表明,在时间序列细分的质量方面,ALACPD平均在最先进的CPD算法中排名第一,并且就估计更改点的准确性而言,它与表现最好。 ALACPD的实现可在Github \ footNote {\ url {https://github.com/zahraatashgahi/alacpd}}上在线获得。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
大量的数据和创新算法使数据驱动的建模成为现代行业的流行技术。在各种数据驱动方法中,潜在变量模型(LVM)及其对应物占主要份额,并在许多工业建模领域中起着至关重要的作用。 LVM通常可以分为基于统计学习的经典LVM和基于神经网络的深层LVM(DLVM)。我们首先讨论经典LVM的定义,理论和应用,该定义和应用既是综合教程,又是对经典LVM的简短申请调查。然后,我们对当前主流DLVM进行了彻底的介绍,重点是其理论和模型体系结构,此后不久就提供了有关DLVM的工业应用的详细调查。上述两种类型的LVM具有明显的优势和缺点。具体而言,经典的LVM具有简洁的原理和良好的解释性,但是它们的模型能力无法解决复杂的任务。基于神经网络的DLVM具有足够的模型能力,可以在复杂的场景中实现令人满意的性能,但它以模型的解释性和效率为例。旨在结合美德并减轻这两种类型的LVM的缺点,并探索非神经网络的举止以建立深层模型,我们提出了一个新颖的概念,称为“轻量级Deep LVM(LDLVM)”。在提出了这个新想法之后,该文章首先阐述了LDLVM的动机和内涵,然后提供了两个新颖的LDLVM,并详尽地描述了其原理,建筑和优点。最后,讨论了前景和机会,包括重要的开放问题和可能的研究方向。
translated by 谷歌翻译
现代工业设施在生产过程中生成大量的原始传感器数据。该数据用于监视和控制过程,可以分析以检测和预测过程异常。通常,数据必须由专家注释,以进一步用于预测建模。当今的大多数研究都集中在需要手动注释数据的无监督异常检测算法或监督方法上。这些研究通常是使用过程模拟器生成的狭窄事件类别的数据进行的,并且在公开可用的数据集上很少验证建议的算法。在本文中,我们提出了一种新型的方法,用于用于工业化学传感器数据的无监督故障检测和诊断。我们根据具有各种故障类型的田纳西州伊士曼进程的两个公开数据集证明了我们的模型性能。结果表明,我们的方法显着优于现有方法(固定FPR的+0.2-0.3 TPR),并在不使用专家注释的情况下检测大多数过程故障。此外,我们进行了实验,以证明我们的方法适用于未提前不知道故障类型数量的现实世界应用。
translated by 谷歌翻译
Concept drift primarily refers to an online supervised learning scenario when the relation between the input data and the target variable changes over time. Assuming a general knowledge of supervised learning in this paper we characterize adaptive learning process, categorize existing strategies for handling concept drift, overview the most representative, distinct and popular techniques and algorithms, discuss evaluation methodology of adaptive algorithms, and present a set of illustrative applications. The survey covers the different facets of concept drift in an integrated way to reflect on the existing scattered state-of-the-art. Thus, it aims at providing a comprehensive introduction to the concept drift adaptation for researchers, industry analysts and practitioners.
translated by 谷歌翻译
评估能源转型和能源市场自由化对资源充足性的影响是一种越来越重要和苛刻的任务。能量系统的上升复杂性需要足够的能量系统建模方法,从而提高计算要求。此外,随着复杂性,同样调用概率评估和场景分析同样增加不确定性。为了充分和高效地解决这些各种要求,需要来自数据科学领域的新方法来加速当前方法。通过我们的系统文献综述,我们希望缩小三个学科之间的差距(1)电力供应安全性评估,(2)人工智能和(3)实验设计。为此,我们对所选应用领域进行大规模的定量审查,并制作彼此不同学科的合成。在其他发现之外,我们使用基于AI的方法和应用程序的AI方法和应用来确定电力供应模型的复杂安全性的元素,并作为未充分涵盖的应用领域的储存调度和(非)可用性。我们结束了推出了一种新的方法管道,以便在评估电力供应安全评估时充分有效地解决当前和即将到来的挑战。
translated by 谷歌翻译
概念漂移过程挖掘(PM)是一种挑战,因为古典方法假设进程处于稳态,即事件共享相同的进程版本。我们对这些领域的交叉点进行了系统的文献综述,从而审查了过程采矿中的概念漂移,并提出了用于漂移检测和在线流程挖掘的现有技术的分类,以实现不断发展的环境。现有的作品描绘了(i)PM仍然主要关注离线分析,并且(ii)由于缺乏公共评估协议,数据集和指标,过程中的概念漂移技术的评估是麻烦的。
translated by 谷歌翻译
The detection of anomalies in time series data is crucial in a wide range of applications, such as system monitoring, health care or cyber security. While the vast number of available methods makes selecting the right method for a certain application hard enough, different methods have different strengths, e.g. regarding the type of anomalies they are able to find. In this work, we compare six unsupervised anomaly detection methods with different complexities to answer the questions: Are the more complex methods usually performing better? And are there specific anomaly types that those method are tailored to? The comparison is done on the UCR anomaly archive, a recent benchmark dataset for anomaly detection. We compare the six methods by analyzing the experimental results on a dataset- and anomaly type level after tuning the necessary hyperparameter for each method. Additionally we examine the ability of individual methods to incorporate prior knowledge about the anomalies and analyse the differences of point-wise and sequence wise features. We show with broad experiments, that the classical machine learning methods show a superior performance compared to the deep learning methods across a wide range of anomaly types.
translated by 谷歌翻译
基于签名的技术使数学洞察力洞悉不断发展的数据的复杂流之间的相互作用。这些见解可以自然地转化为理解流数据的数值方法,也许是由于它们的数学精度,已被证明在数据不规则而不是固定的情况下分析流的数据以及数据和数据的尺寸很有用样本量均为中等。了解流的多模式数据是指数的:$ d $ d $的字母中的$ n $字母中的一个单词可以是$ d^n $消息之一。签名消除了通过采样不规则性引起的指数级噪声,但仍然存在指数量的信息。这项调查旨在留在可以直接管理指数缩放的域中。在许多问题中,可伸缩性问题是一个重要的挑战,但需要另一篇调查文章和进一步的想法。这项调查描述了一系列环境集足够小以消除大规模机器学习的可能性,并且可以有效地使用一小部分免费上下文和原则性功能。工具的数学性质可以使他们对非数学家的使用恐吓。本文中介绍的示例旨在弥合此通信差距,并提供从机器学习环境中绘制的可进行的工作示例。笔记本可以在线提供这些示例中的一些。这项调查是基于伊利亚·雪佛兰(Ilya Chevryev)和安德烈·科米利津(Andrey Kormilitzin)的早期论文,它们在这种机械开发的较早时刻大致相似。本文说明了签名提供的理论见解是如何在对应用程序数据的分析中简单地实现的,这种方式在很大程度上对数据类型不可知。
translated by 谷歌翻译
为了允许机器学习算法从原始数据中提取知识,必须首先清除,转换,并将这些数据置于适当的形式。这些通常很耗时的阶段被称为预处理。预处理阶段的一个重要步骤是特征选择,其目的通过减少数据集的特征量来更好地执行预测模型。在这些数据集中,不同事件的实例通常是不平衡的,这意味着某些正常事件被超出,而其他罕见事件非常有限。通常,这些罕见的事件具有特殊的兴趣,因为它们具有比正常事件更具辨别力。这项工作的目的是过滤提供给这些罕见实例的特征选择方法的实例,从而积极影响特征选择过程。在这项工作过程中,我们能够表明这种过滤对分类模型的性能以及异常值检测方法适用于该过滤。对于某些数据集,所产生的性能增加仅为百分点,但对于其他数据集,我们能够实现高达16%的性能的增加。这项工作应导致预测模型的改进以及在预处理阶段的过程中的特征选择更好的可解释性。本着公开科学的精神,提高了我们的研究领域的透明度,我们已经在公开的存储库中提供了我们的所有源代码和我们的实验结果。
translated by 谷歌翻译
REED继电器是功能测试的基本组成部分,与电子产品的成功质量检查密切相关。为了为REED继电器提供准确的剩余使用寿命(RUL)估计,根据以下三个考虑,提出了具有降解模式聚类的混合深度学习网络。首先,对于REED继电器,观察到多种降解行为,因此提供了基于动态的$ K $ -MEANS聚类,以区分彼此的退化模式。其次,尽管适当的功能选择具有重要意义,但很少有研究可以指导选择。提出的方法建议进行操作规则,以实施轻松实施。第三,提出了用于剩余使用寿命估计的神经网络(RULNET),以解决卷积神经网络(CNN)在捕获顺序数据的时间信息中的弱点,该信息在卷积操作的高级特征表示后结合了时间相关能力。通过这种方式,lulnet的三种变体由健康指标,具有自组织地图的功能或具有曲线拟合的功能构建。最终,将提出的混合模型与典型的基线模型(包括CNN和长期记忆网络(LSTM))进行了比较,该模型通过具有两个不同不同降级方式的实用REED继电器数据集进行了比较。两种降解案例的结果表明,所提出的方法在索引均方根误差方面优于CNN和LSTM。
translated by 谷歌翻译
随着社会,医疗,工业和科学过程的扫描数字化,正在部署传感技术,从而产生越来越多的时间序列数据,从而推动了一种新的新的或改进的应用。在此设置中,异常值检测通常很重要,而基于神经网络的解决方案存在,则它们会在精度和效率方面留出改进的空间。凭借实现这种改进的目的,我们提出了一个多样性驱动的卷积的集合。为了提高准确性,该合奏采用多个基本的异常值在卷积序列到序列自动泊车上构建的基本异常值检测模型,可以在时间序列中捕获时间依赖性。此外,一种新型的多样性驱动的训练方法在基本模型中保持多样性,目的是提高集合的准确性。为了提高效率,该方法在训练期间能够高度平行。此外,它能够将某些模型参数从一个基本模型转换为另一个基本模型,这减少了培训时间。我们使用现实世界多变量时间序列报告了广泛的实验,提供了对新方法的设计选择的深入了解,并提供了能够提高准确性和效率的证据。这是一个扩展版本的“无监督时间序列异常检测与分集驱动的卷积合奏”,以出现在PVLDB 2022中。
translated by 谷歌翻译
自动日志文件分析可以尽早发现相关事件,例如系统故障。特别是,自我学习的异常检测技术在日志数据中捕获模式,随后向系统操作员报告意外的日志事件事件,而无需提前提供或手动对异常情况进行建模。最近,已经提出了越来越多的方法来利用深度学习神经网络为此目的。与传统的机器学习技术相比,这些方法证明了出色的检测性能,并同时解决了不稳定数据格式的问题。但是,有许多不同的深度学习体系结构,并且编码由神经网络分析的原始和非结构化日志数据是不平凡的。因此,我们进行了系统的文献综述,概述了部署的模型,数据预处理机制,异常检测技术和评估。该调查没有定量比较现有方法,而是旨在帮助读者了解不同模型体系结构的相关方面,并强调未来工作的开放问题。
translated by 谷歌翻译