图形神经网络(GNN)已被证明具有强大的表示能力,可以利用该图形在图形结构数据(例如分子和社交网络)上的下游预测任务。他们通常通过从单个顶点的$ K $ - 霍普社区或图表中的枚举步行中汇总信息来学习表示形式。先前的研究表明,将加权方案纳入GNN的有效性。但是,到目前为止,这主要仅限于$ k $ hop的社区GNNS。在本文中,我们旨在设计一种将加权方案纳入步行式GNN并分析其效果的算法。我们提出了一种称为Aware的新型GNN模型,该模型使用注意方案汇总了有关图中的步行的信息。这导致了在标准设置中用于图形预测任务的端到端监督学习方法,其中输入是图形的邻接和顶点信息,并且输出是图形的预测标签。然后,我们对Aware进行理论,经验和解释性分析。我们在简化设置中的理论分析确定了可证明的保证的成功条件,证明了图表信息如何在表示中编码,以及意识中的加权方案如何影响表示和学习绩效。我们的实验表明,在分子财产预测和社交网络领域的标准设置中,在图形预测任务中意识到的强劲表现。最后,我们的解释研究表明,意识到可以成功捕获输入图的重要子结构。该代码可在$ \ href {https://github.com/mehmetfdemirel/aware} {github} $上获得。
translated by 谷歌翻译
Graph classification is an important area in both modern research and industry. Multiple applications, especially in chemistry and novel drug discovery, encourage rapid development of machine learning models in this area. To keep up with the pace of new research, proper experimental design, fair evaluation, and independent benchmarks are essential. Design of strong baselines is an indispensable element of such works. In this thesis, we explore multiple approaches to graph classification. We focus on Graph Neural Networks (GNNs), which emerged as a de facto standard deep learning technique for graph representation learning. Classical approaches, such as graph descriptors and molecular fingerprints, are also addressed. We design fair evaluation experimental protocol and choose proper datasets collection. This allows us to perform numerous experiments and rigorously analyze modern approaches. We arrive to many conclusions, which shed new light on performance and quality of novel algorithms. We investigate application of Jumping Knowledge GNN architecture to graph classification, which proves to be an efficient tool for improving base graph neural network architectures. Multiple improvements to baseline models are also proposed and experimentally verified, which constitutes an important contribution to the field of fair model comparison.
translated by 谷歌翻译
近年来,基于Weisfeiler-Leman算法的算法和神经架构,是一个众所周知的Graph同构问题的启发式问题,它成为具有图形和关系数据的机器学习的强大工具。在这里,我们全面概述了机器学习设置中的算法的使用,专注于监督的制度。我们讨论了理论背景,展示了如何将其用于监督的图形和节点表示学习,讨论最近的扩展,并概述算法的连接(置换 - )方面的神经结构。此外,我们概述了当前的应用和未来方向,以刺激进一步的研究。
translated by 谷歌翻译
在过去十年中,图形内核引起了很多关注,并在结构化数据上发展成为一种快速发展的学习分支。在过去的20年中,该领域发生的相当大的研究活动导致开发数十个图形内核,每个图形内核都对焦于图形的特定结构性质。图形内核已成功地成功地在广泛的域中,从社交网络到生物信息学。本调查的目标是提供图形内核的文献的统一视图。特别是,我们概述了各种图形内核。此外,我们对公共数据集的几个内核进行了实验评估,并提供了比较研究。最后,我们讨论图形内核的关键应用,并概述了一些仍有待解决的挑战。
translated by 谷歌翻译
图形内核是历史上最广泛使用的图形分类任务的技术。然而,由于图的手工制作的组合特征,这些方法具有有限的性能。近年来,由于其性能卓越,图形神经网络(GNNS)已成为与下游图形相关任务的最先进的方法。大多数GNN基于消息传递神经网络(MPNN)框架。然而,最近的研究表明,MPNN不能超过Weisfeiler-Lehman(WL)算法在图形同构术中的力量。为了解决现有图形内核和GNN方法的限制,在本文中,我们提出了一种新的GNN框架,称为\ Texit {内核图形神经网络}(Kernnns),该框架将图形内核集成到GNN的消息传递过程中。通过卷积神经网络(CNNS)中的卷积滤波器的启发,KERGNNS采用可训练的隐藏图作为绘图过滤器,该绘图过滤器与子图组合以使用图形内核更新节点嵌入式。此外,我们表明MPNN可以被视为Kergnns的特殊情况。我们将Kergnns应用于多个与图形相关的任务,并使用交叉验证来与基准进行公平比较。我们表明,与现有的现有方法相比,我们的方法达到了竞争性能,证明了增加GNN的表现能力的可能性。我们还表明,KERGNNS中的训练有素的图形过滤器可以揭示数据集的本地图形结构,与传统GNN模型相比,显着提高了模型解释性。
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
我们专注于使用图形神经网络(GNN)模型来分类的图形分类,该模型预先计算了使用并行排列的邻域聚合图操作员的Bank的节点功能。这些GNN模型具有降低培训和推理时间,由于预兆,而且还与流行的GNN变体不同,这些VNN变体通过训练期间通过顺序邻域聚合过程更新节点特征。我们提供了理论条件,其中具有平行邻域聚集(简称PA-GNN的PA-GNN)的通用GNN模型作为鉴别非同胞图的众所周知的Weisfeiler-Lehman(WL)曲线构同试验。虽然PA-GNN模型与WL测试没有明显的关系,但我们表明从这两种方法获得的图形嵌入是无标有关的。然后,我们提出了一个专门的PA-GNN模型,称为旋转,从而携带开发的条件。我们通过数值实验证明了开发的模型在许多不同的现实世界数据集上实现了最先进的性能,同时保持WL测试的辨别力和训练过程之前预处理图的计算优势。
translated by 谷歌翻译
Many applications of machine learning require a model to make accurate predictions on test examples that are distributionally different from training ones, while task-specific labels are scarce during training. An effective approach to this challenge is to pre-train a model on related tasks where data is abundant, and then fine-tune it on a downstream task of interest. While pre-training has been effective in many language and vision domains, it remains an open question how to effectively use pre-training on graph datasets. In this paper, we develop a new strategy and self-supervised methods for pre-training Graph Neural Networks (GNNs). The key to the success of our strategy is to pre-train an expressive GNN at the level of individual nodes as well as entire graphs so that the GNN can learn useful local and global representations simultaneously. We systematically study pre-training on multiple graph classification datasets. We find that naïve strategies, which pre-train GNNs at the level of either entire graphs or individual nodes, give limited improvement and can even lead to negative transfer on many downstream tasks. In contrast, our strategy avoids negative transfer and improves generalization significantly across downstream tasks, leading up to 9.4% absolute improvements in ROC-AUC over non-pre-trained models and achieving state-of-the-art performance for molecular property prediction and protein function prediction.However, pre-training on graph datasets remains a hard challenge. Several key studies (
translated by 谷歌翻译
图表可以模拟实体之间的复杂交互,它在许多重要的应用程序中自然出现。这些应用程序通常可以投入到标准图形学习任务中,其中关键步骤是学习低维图表示。图形神经网络(GNN)目前是嵌入方法中最受欢迎的模型。然而,邻域聚合范例中的标准GNN患有区分\ EMPH {高阶}图形结构的有限辨别力,而不是\ EMPH {低位}结构。为了捕获高阶结构,研究人员求助于主题和开发的基于主题的GNN。然而,现有的基于主基的GNN仍然仍然遭受较少的辨别力的高阶结构。为了克服上述局限性,我们提出了一个新颖的框架,以更好地捕获高阶结构的新框架,铰接于我们所提出的主题冗余最小化操作员和注射主题组合的新颖框架。首先,MGNN生成一组节点表示W.R.T.每个主题。下一阶段是我们在图案中提出的冗余最小化,该主题在彼此相互比较并蒸馏出每个主题的特征。最后,MGNN通过组合来自不同图案的多个表示来执行节点表示的更新。特别地,为了增强鉴别的功率,MGNN利用重新注射功能来组合表示的函数w.r.t.不同的主题。我们进一步表明,我们的拟议体系结构增加了GNN的表现力,具有理论分析。我们展示了MGNN在节点分类和图形分类任务上的七个公共基准上表现出最先进的方法。
translated by 谷歌翻译
在处理表格数据时,基于回归和决策树的模型是一个流行的选择,因为与其他模型类别相比,它们在此类任务上提供了高精度及其易于应用。但是,在图形结构数据方面,当前的树学习算法不提供管理数据结构的工具,而不是依靠功能工程。在这项工作中,我们解决了上述差距,并引入了图形树(GTA),这是一个新的基于树的学习算法,旨在在图形上操作。 GTA既利用图形结构又利用了顶点的特征,并采用了一种注意机制,该机制允许决策专注于图形的子结构。我们分析了GTA模型,并表明它们比平原决策树更具表现力。我们还在多个图和节点预测基准上证明了GTA的好处。在这些实验中,GTA始终优于其他基于树的模型,并且通常优于其他类型的图形学习算法,例如图形神经网络(GNNS)和图核。最后,我们还为GTA提供了一种解释性机制,并证明它可以提供直观的解释。
translated by 谷歌翻译
图形神经网络(GNN)已成为一种学习关系数据的强大技术。由于他们执行的消息传递步骤数量相对有限 - 因此一个较小的接收领域,人们对通过结合基础图的结构方面来提高其表现力引起了极大的兴趣。在本文中,我们探讨了亲和力措施作为图形神经网络中的特征,特别是由随机步行引起的措施,包括有效的阻力,击球和通勤时间。我们根据这些功能提出消息传递网络,并评估其在各种节点和图形属性预测任务上的性能。我们的体系结构具有较低的计算复杂性,而我们的功能对于基础图的排列不变。我们计算的措施使网络可以利用图表的连接性能,从而使我们能够超过相关的基准,用于各种任务,通常具有更少的消息传递步骤。在OGB-LSC-PCQM4MV1的最大公共图形回归数据集之一中,我们在编写时获得了最著名的单模验证MAE。
translated by 谷歌翻译
我们提出了一个新的图形神经网络,我们称为AgentNet,该网络专为图形级任务而设计。 AgentNet的灵感来自子宫性算法,具有独立于图形大小的计算复杂性。代理Net的体系结构从根本上与已知图神经网络的体系结构不同。在AgentNet中,一些受过训练的\ textit {神经代理}智能地行走图,然后共同决定输出。我们提供了对AgentNet的广泛理论分析:我们表明,代理可以学会系统地探索其邻居,并且AgentNet可以区分某些甚至3-WL无法区分的结构。此外,AgentNet能够将任何两个图形分开,这些图在子图方面完全不同。我们通过在难以辨认的图和现实图形分类任务上进行合成实验来确认这些理论结果。在这两种情况下,我们不仅与标准GNN相比,而且与计算更昂贵的GNN扩展相比。
translated by 谷歌翻译
最新提出的基于变压器的图形模型的作品证明了香草变压器用于图形表示学习的不足。要了解这种不足,需要研究变压器的光谱分析是否会揭示其对其表现力的见解。类似的研究已经确定,图神经网络(GNN)的光谱分析为其表现力提供了额外的观点。在这项工作中,我们系统地研究并建立了变压器领域中的空间和光谱域之间的联系。我们进一步提供了理论分析,并证明了变压器中的空间注意机制无法有效捕获所需的频率响应,因此,固有地限制了其在光谱空间中的表现力。因此,我们提出了feta,该框架旨在在整个图形频谱(即图形的实际频率成分)上进行注意力类似于空间空间中的注意力。经验结果表明,FETA在标准基准的所有任务中为香草变压器提供均匀的性能增益,并且可以轻松地扩展到具有低通特性的基于GNN的模型(例如GAT)。
translated by 谷歌翻译
由于现实世界图形/网络数据中的广泛标签稀缺问题,因此,自我监督的图形神经网络(GNN)非常需要。曲线图对比度学习(GCL),通过训练GNN以其不同的增强形式最大化相同图表之间的表示之间的对应关系,即使在不使用标签的情况下也可以产生稳健和可转移的GNN。然而,GNN由传统的GCL培训经常冒险捕获冗余图形特征,因此可能是脆弱的,并在下游任务中提供子对比。在这里,我们提出了一种新的原理,称为普通的普通GCL(AD-GCL),其使GNN能够通过优化GCL中使用的对抗性图形增强策略来避免在训练期间捕获冗余信息。我们将AD-GCL与理论解释和设计基于可训练的边缘滴加图的实际实例化。我们通过与最先进的GCL方法进行了实验验证了AD-GCL,并在无监督,6 \%$ 14 \%$ 6 \%$ 14 \%$ 6 \%$ 6 \%$ 3 \%$ 3 \%$达到半监督总体学习设置,具有18个不同的基准数据集,用于分子属性回归和分类和社交网络分类。
translated by 谷歌翻译
Graph neural networks (GNNs) are widely used for modeling complex interactions between entities represented as vertices of a graph. Despite recent efforts to theoretically analyze the expressive power of GNNs, a formal characterization of their ability to model interactions is lacking. The current paper aims to address this gap. Formalizing strength of interactions through an established measure known as separation rank, we quantify the ability of certain GNNs to model interaction between a given subset of vertices and its complement, i.e. between sides of a given partition of input vertices. Our results reveal that the ability to model interaction is primarily determined by the partition's walk index -- a graph-theoretical characteristic that we define by the number of walks originating from the boundary of the partition. Experiments with common GNN architectures corroborate this finding. As a practical application of our theory, we design an edge sparsification algorithm named Walk Index Sparsification (WIS), which preserves the ability of a GNN to model interactions when input edges are removed. WIS is simple, computationally efficient, and markedly outperforms alternative methods in terms of induced prediction accuracy. More broadly, it showcases the potential of improving GNNs by theoretically analyzing the interactions they can model.
translated by 谷歌翻译
作为建模复杂关系的强大工具,HyperGraphs从图表学习社区中获得了流行。但是,深度刻画学习中的常用框架专注于具有边缘独立的顶点权重(EIVW)的超图,而无需考虑具有具有更多建模功率的边缘依赖性顶点权重(EDVWS)的超图。为了弥补这一点,我们提出了一般的超图光谱卷积(GHSC),这是一个通用学习框架,不仅可以处理EDVW和EIVW HyperGraphs,而且更重要的是,理论上可以明确地利用现有强大的图形卷积神经网络(GCNN)明确说明,从而很大程度上可以释放。超图神经网络的设计。在此框架中,给定的无向GCNN的图形拉普拉斯被统一的HyperGraph Laplacian替换,该统一的HyperGraph Laplacian通过将我们所定义的广义超透明牌与简单的无向图等同起来,从随机的步行角度将顶点权重信息替换。来自各个领域的广泛实验,包括社交网络分析,视觉目标分类和蛋白质学习,证明了拟议框架的最新性能。
translated by 谷歌翻译
最近出现了许多子图增强图神经网络(GNN),可证明增强了标准(消息通话)GNN的表达能力。但是,对这些方法之间的相互关系和weisfeiler层次结构的关系有限。此外,当前的方法要么使用给定尺寸的所有子图,要随机均匀地对其进行采样,或者使用手工制作的启发式方法,而不是学习以数据驱动的方式选择子图。在这里,我们提供了一种统一的方法来研究此类体系结构,通过引入理论框架并扩展了亚图增强GNN的已知表达结果。具体而言,我们表明,增加子图的大小总是会增加表达能力,并通过将它们与已建立的$ k \ text { - } \ Mathsf {Wl} $ hierArchy联系起来,从而更好地理解其局限性。此外,我们还使用最近通过复杂的离散概率分布进行反向传播的方法探索了学习对子图进行采样的不同方法。从经验上讲,我们研究了不同子图增强的GNN的预测性能,表明我们的数据驱动体系结构与非DATA驱动的亚图增强图形神经网络相比,在标准基准数据集上提高了对标准基准数据集的预测准确性,同时减少了计算时间。
translated by 谷歌翻译
Graph Neural Networks (GNNs) are an effective framework for representation learning of graphs. GNNs follow a neighborhood aggregation scheme, where the representation vector of a node is computed by recursively aggregating and transforming representation vectors of its neighboring nodes. Many GNN variants have been proposed and have achieved state-of-the-art results on both node and graph classification tasks. However, despite GNNs revolutionizing graph representation learning, there is limited understanding of their representational properties and limitations. Here, we present a theoretical framework for analyzing the expressive power of GNNs to capture different graph structures. Our results characterize the discriminative power of popular GNN variants, such as Graph Convolutional Networks and GraphSAGE, and show that they cannot learn to distinguish certain simple graph structures. We then develop a simple architecture that is provably the most expressive among the class of GNNs and is as powerful as the Weisfeiler-Lehman graph isomorphism test. We empirically validate our theoretical findings on a number of graph classification benchmarks, and demonstrate that our model achieves state-of-the-art performance. * Equal contribution. † Work partially performed while in Tokyo, visiting Prof. Ken-ichi Kawarabayashi.
translated by 谷歌翻译
分子特性预测在药物发现中起着基本作用,以鉴定具有目标性质的候选分子。然而,分子特性预测基本上是几次射门问题,这使得难以使用普通机器学习模型。在本文中,我们提出了一个属性感知的关系网络(PAR)来处理此问题。与现有的作品相比,我们利用了不同分子特性的相关子结构和关系的事实。我们首先介绍一个属性感知的嵌入功能,将通用分子嵌入的功能转换为与目标属性相关的子结构感知空间。此外,我们设计了一个自适应关系图学习模块,共同估计了分子关系图和优化分子嵌入W.R.T.目标性质,使得有限标签可以有效地在类似的分子之间繁殖。我们采用元学习策略,其中参数在任务中选择性地更新,以便单独模拟通用和属性感知的知识。基准分子特性预测数据集的广泛实验表明,始终如一地优于现有方法,并可以正确获得性能感知分子嵌入和模型分子关系图。
translated by 谷歌翻译
消息传递神经网络(MPNNS)是由于其简单性和可扩展性而大部分地进行图形结构数据的深度学习的领先架构。不幸的是,有人认为这些架构的表现力有限。本文提出了一种名为Comifariant Subgraph聚合网络(ESAN)的新颖框架来解决这个问题。我们的主要观察是,虽然两个图可能无法通过MPNN可区分,但它们通常包含可区分的子图。因此,我们建议将每个图形作为由某些预定义策略导出的一组子图,并使用合适的等分性架构来处理它。我们为图同构同构同构造的1立维Weisfeiler-Leman(1-WL)测试的新型变体,并在这些新的WL变体方面证明了ESAN的表达性下限。我们进一步证明,我们的方法增加了MPNNS和更具表现力的架构的表现力。此外,我们提供了理论结果,描述了设计选择诸如子图选择政策和等效性神经结构的设计方式如何影响我们的架构的表现力。要处理增加的计算成本,我们提出了一种子图采样方案,可以将其视为我们框架的随机版本。关于真实和合成数据集的一套全面的实验表明,我们的框架提高了流行的GNN架构的表现力和整体性能。
translated by 谷歌翻译