近年来,通过开发大型的深层模型,图像修复任务已经见证了绩效的巨大提高。尽管表现出色,但深层模型要求的重量计算限制了图像恢复的应用。为了提高限制,需要减少网络的大小,同时保持准确性。最近,N:M结构化修剪似乎是使模型具有准确性约束的有效且实用的修剪方法之一。但是,它无法解释图像恢复网络不同层的不同计算复杂性和性能要求。为了进一步优化效率和恢复精度之间的权衡,我们提出了一种新型的修剪方法,该方法确定了每一层N:M结构稀疏性的修剪比。关于超分辨率和脱张任务的广泛实验结果证明了我们方法的功效,该方法的表现胜过以前的修剪方法。拟议方法的Pytorch实施将在https://github.com/junghunoh/sls_cvpr2r2022上公开获得。
translated by 谷歌翻译
尽管具有卷积神经网络(CNN)的图像超分辨率(SR)的突破性进步,但由于SR网络的计算复杂性很高,SR尚未享受无处不在的应用。量化是解决此问题的有前途方法之一。但是,现有的方法无法量化低于8位的位宽度的SR模型,由于固定的位宽度量化量的严重精度损失。在这项工作中,为了实现高平均比重减少,准确性损失较低,我们建议针对SR网络的新颖的内容感知动态量化(CADYQ)方法,该方法将最佳位置分配给本地区域和层,并根据输入的本地内容适应。图片。为此,引入了一个可训练的位选择器模块,以确定每一层和给定的本地图像补丁的适当位宽度和量化水平。该模块受量化灵敏度的控制,该量化通过使用贴片的图像梯度的平均幅度和层的输入特征的标准偏差来估计。拟议的量化管道已在各种SR网络上进行了测试,并对几个标准基准进行了广泛评估。计算复杂性和升高恢复精度的显着降低清楚地表明了SR提出的CADYQ框架的有效性。代码可从https://github.com/cheeun/cadyq获得。
translated by 谷歌翻译
Image restoration tasks have achieved tremendous performance improvements with the rapid advancement of deep neural networks. However, most prevalent deep learning models perform inference statically, ignoring that different images have varying restoration difficulties and lightly degraded images can be well restored by slimmer subnetworks. To this end, we propose a new solution pipeline dubbed ClassPruning that utilizes networks with different capabilities to process images with varying restoration difficulties. In particular, we use a lightweight classifier to identify the image restoration difficulty, and then the sparse subnetworks with different capabilities can be sampled based on predicted difficulty by performing dynamic N:M fine-grained structured pruning on base restoration networks. We further propose a novel training strategy along with two additional loss terms to stabilize training and improve performance. Experiments demonstrate that ClassPruning can help existing methods save approximately 40% FLOPs while maintaining performance.
translated by 谷歌翻译
通过强迫连续重量的最多n非零,最近的N:M网络稀疏性因其两个有吸引力的优势而受到越来越多的关注:1)高稀疏性的有希望的表现。 2)对NVIDIA A100 GPU的显着加速。最近的研究需要昂贵的训练阶段或重型梯度计算。在本文中,我们表明N:M学习可以自然地将其描述为一个组合问题,该问题可以在有限的集合中寻找最佳组合候选者。由这种特征激励,我们以有效的分裂方式解决了n:m的稀疏性。首先,我们将重量向量分为$ c _ {\ text {m}}}^{\ text {n}} $组合s子集的固定大小N。然后,我们通过分配每个组合来征服组合问题,一个可学习的分数是共同优化了其关联权重。我们证明,引入的评分机制可以很好地模拟组合子集之间的相对重要性。通过逐渐去除低得分的子集,可以在正常训练阶段有效地优化N:M细粒稀疏性。全面的实验表明,我们的学习最佳组合(LBC)的表现始终如一,始终如一地比现成的N:m稀疏方法更好。我们的代码在\ url {https://github.com/zyxxmu/lbc}上发布。
translated by 谷歌翻译
基于深度学习的超分辨率(SR)近年来由于其高图像质量性能和广泛的应用方案而获得了极大的知名度。但是,先前的方法通常会遭受大量计算和巨大的功耗,这会导致实时推断的困难,尤其是在资源有限的平台(例如移动设备)上。为了减轻这种情况,我们建议使用自适应SR块进行深度搜索和每层宽度搜索,以进行深度搜索和每层宽度搜索。推理速度与SR损失一起直接将其带入具有高图像质量的SR模型,同​​时满足实时推理需求。借用了与编译器优化的速度模型在搜索过程中每次迭代中的移动设备上的速度,以预测具有各种宽度配置的SR块的推理潜伏期,以更快地收敛。通过提出的框架,我们在移动平台的GPU/DSP上实现了实时SR推断,以实现具有竞争性SR性能的720p分辨率(三星Galaxy S21)。
translated by 谷歌翻译
在本文中,我们提出了用于卷积神经网络的可分散的信道稀疏性搜索(DCS)。与需要用户手动设置每个卷积层的紫星比的传统信道修剪算法不同,DCSS自动搜索稀疏的最佳组合。灵感来自可怜的架构搜索(飞镖),我们从连续放松中汲取课程,并利用梯度信息来平衡计算成本和指标。由于直接应用飞镖方案引起形状不匹配和过度的记忆消耗,因此在过滤器内引入一种名为重量共享的新技术。这种技术优雅地消除了具有可忽略额外资源的形状不匹配的问题。我们不仅开展全面的实验,不仅是图像分类,还可以找到包括语义分割和图像超分辨率的粒度任务,以验证DCSS的有效性。与以前的网络修剪方法相比,DCSS实现了图像分类的最先进结果。语义分割和图像超分辨率的实验结果表明,特定于任务特定搜索的性能比转移超薄模型实现了更好的性能,展示了广泛的适用性和高效率的DCSS。
translated by 谷歌翻译
稀疏性已成为压缩和加速深度神经网络(DNN)的有前途方法之一。在不同类别的稀疏性中,由于其对现代加速器的有效执行,结构化的稀疏性引起了人们的关注。特别是,n:m稀疏性很有吸引力,因为已经有一些硬件加速器架构可以利用某些形式的n:m结构化稀疏性来产生更高的计算效率。在这项工作中,我们专注于N:M的稀疏性,并广泛研究和评估N:M稀疏性的各种培训食谱,以模型准确性和计算成本(FLOPS)之间的权衡(FLOPS)。在这项研究的基础上,我们提出了两种新的基于衰减的修剪方法,即“修剪面膜衰减”和“稀疏结构衰减”。我们的评估表明,这些提出的方法始终提供最新的(SOTA)模型精度,可与非结构化的稀疏性相当,在基于变压器的模型上用于翻译任务。使用新培训配方的稀疏模型准确性的提高是以总训练计算(FLOP)边际增加的成本。
translated by 谷歌翻译
较轻,更快的型号对于在资源有限设备(例如智能手机和可穿戴设备)上部署视频超分辨率(VSR)至关重要。在本文中,我们开发了残留的稀疏连接学习(RSCL),这是一种结构化的修剪方案,以减少卷积内核的冗余,并获得较小的性能下降的紧凑型VSR网络。但是,残留的块要求将跳过的修剪过滤器索引和残留连接相同,这对于修剪很棘手。因此,为了减轻剩余块的修剪限制,我们通过保留特征通道并仅在重要的通道上运行来设计残留的稀疏连接(RSC)方案。此外,对于Pixel-Shuffle操作,我们通过将几个过滤器分组为修剪单元来设计一种特殊的修剪方案,以确保修剪后功能通道空间转换的准确性。此外,我们引入了时间登录(TF),以减少具有时间传播的隐藏状态的修剪误差放大。广泛的实验表明,提出的RSCL在定量和质量上明显优于最新方法。代码和模型将发布。
translated by 谷歌翻译
重量修剪是一种有效的模型压缩技术,可以解决在移动设备上实现实时深神经网络(DNN)推断的挑战。然而,由于精度劣化,难以利用硬件加速度,以及某些类型的DNN层的限制,难以降低的应用方案具有有限的应用方案。在本文中,我们提出了一般的细粒度的结构化修剪方案和相应的编译器优化,适用于任何类型的DNN层,同时实现高精度和硬件推理性能。随着使用我们的编译器优化所支持的不同层的灵活性,我们进一步探讨了确定最佳修剪方案的新问题,了解各种修剪方案的不同加速度和精度性能。两个修剪方案映射方法,一个是基于搜索,另一个是基于规则的,建议自动推导出任何给定DNN的每层的最佳修剪规则和块大小。实验结果表明,我们的修剪方案映射方法,以及一般细粒化结构修剪方案,优于最先进的DNN优化框架,最高可达2.48 $ \ times $和1.73 $ \ times $ DNN推理加速在CiFar-10和Imagenet DataSet上没有准确性损失。
translated by 谷歌翻译
由于计算的未来是异质的,因此可伸缩性是单图超分辨率的关键问题。最近的工作尝试训练一个网络,该网络可以部署在具有不同能力的平台上。但是,他们依靠像素稀疏卷积,这不是硬件友好,并且实现了有限的实际加速。由于可以将图像分为各种恢复困难的斑块,因此我们提出了一种基于自适应贴片(APE)的可扩展方法,以实现更实用的加速。具体而言,我们建议训练回归器,以预测贴片每一层的增量能力。一旦增量容量低于阈值,贴片就可以在特定层中退出。我们的方法可以通过改变增量容量的阈值来轻松调整性能和效率之间的权衡。此外,我们提出了一种新的策略,以实现我们方法的网络培训。我们在各种骨架,数据集和缩放因素上进行了广泛的实验,以证明我们方法的优势。代码可从https://github.com/littlepure2333/ape获得
translated by 谷歌翻译
深度神经网络通过学习从低分辨率(LR)图像到高分辨率(HR)图像的映射,在图像超分辨率(SR)任务中表现出了显着的性能。但是,SR问题通常是一个不适的问题,现有方法将受到一些局限性。首先,由于可能存在许多不同的HR图像,因此SR的可能映射空间可能非常大,可以将其删除到相同的LR图像中。结果,很难直接从如此大的空间中学习有希望的SR映射。其次,通常不可避免地要开发具有极高计算成本的非常大型模型来产生有希望的SR性能。实际上,可以使用模型压缩技术通过降低模型冗余来获得紧凑的模型。然而,由于非常大的SR映射空间,现有模型压缩方法很难准确识别冗余组件。为了减轻第一个挑战,我们提出了一项双重回归学习计划,以减少可能的SR映射空间。具体而言,除了从LR到HR图像的映射外,我们还学习了一个附加的双回归映射,以估算下采样内核和重建LR图像。通过这种方式,双映射是减少可能映射空间的约束。为了应对第二项挑战,我们提出了一种轻巧的双回归压缩方法,以基于通道修剪来降低图层级别和通道级别的模型冗余。具体而言,我们首先开发了一种通道编号搜索方法,该方法将双重回归损耗最小化以确定每一层的冗余。鉴于搜索的通道编号,我们进一步利用双重回归方式来评估通道的重要性并修剪冗余。广泛的实验显示了我们方法在获得准确有效的SR模型方面的有效性。
translated by 谷歌翻译
彩票票证假设(LTH)表明,密集的模型包含高度稀疏的子网(即获奖门票),可以隔离培训以完全准确。尽管做出了许多激动人心的努力,但仍有一个“常识”很少受到挑战:通过迭代级修剪(IMP)发现了一张获胜的票,因此由此产生的修剪子网仅具有非结构化的稀疏性。这一差距限制了在实践中赢得门票的吸引力,因为高度不规则的稀疏模式在硬件上加速的挑战是挑战性的。同时,直接将结构化修剪替换为非结构化的修剪,以更严重地损害绩效,并且通常无法找到获胜的票。在本文中,我们证明了第一个积极的结果是,总体上可以有效地找到结构上稀疏的获胜票。核心思想是在每一轮(非结构化)IMP之后附加“后处理技术”,以实施结构稀疏的形成。具体而言,我们首先在某些被认为很重要的通道中“重新填充”修剪元素,然后“重新组”非零元素以创建灵活的群体结构模式。我们确定的渠道和团体结构子网都赢得了彩票,并以现有硬件很容易支持的大量推理加速。广泛的实验,在多个网络骨架的不同数据集上进行,一致验证了我们的建议,表明LTH的硬件加速障碍现在已被删除。具体而言,结构上的获胜票最多可获得{64.93%,64.84%,60.23%}的运行时间节省,以{36%〜80%,74%,58%}的稀疏性在{Cifar,cifar,tiny-imageNet,imageNet}上保持可比较的精度。代码在https://github.com/vita-group/structure-lth上。
translated by 谷歌翻译
过滤器修剪的目标是搜索不重要的过滤器以删除以便使卷积神经网络(CNNS)有效而不牺牲过程中的性能。挑战在于找到可以帮助确定每个过滤器关于神经网络的最终输出的重要或相关的信息的信息。在这项工作中,我们分享了我们的观察说,预先训练的CNN的批量标准化(BN)参数可用于估计激活输出的特征分布,而无需处理训练数据。在观察时,我们通过基于预先训练的CNN的BN参数评估每个滤波器的重要性来提出简单而有效的滤波修剪方法。 CiFar-10和Imagenet的实验结果表明,该方法可以在准确性下降和计算复杂性的计算复杂性和降低的折衷方面具有和不进行微调的卓越性能。
translated by 谷歌翻译
The success of CNNs in various applications is accompanied by a significant increase in the computation and parameter storage costs. Recent efforts toward reducing these overheads involve pruning and compressing the weights of various layers without hurting original accuracy. However, magnitude-based pruning of weights reduces a significant number of parameters from the fully connected layers and may not adequately reduce the computation costs in the convolutional layers due to irregular sparsity in the pruned networks. We present an acceleration method for CNNs, where we prune filters from CNNs that are identified as having a small effect on the output accuracy. By removing whole filters in the network together with their connecting feature maps, the computation costs are reduced significantly. In contrast to pruning weights, this approach does not result in sparse connectivity patterns. Hence, it does not need the support of sparse convolution libraries and can work with existing efficient BLAS libraries for dense matrix multiplications. We show that even simple filter pruning techniques can reduce inference costs for VGG-16 by up to 34% and ResNet-110 by up to 38% on CIFAR10 while regaining close to the original accuracy by retraining the networks.
translated by 谷歌翻译
对于移动设备上的实际深度神经网络设计,必须考虑计算资源产生的约束以及各种应用中的推理延迟。在深度网络加速相关方法中,修剪是广泛采用的做法,以平衡计算资源消耗和准确性,可以在明智地或随机地拆除通道的不重要连接,并对模型精度的最小影响最小。信道修剪立即导致显着的延迟降低,而随机重量灌注更加灵活,以平衡延迟和精度。在本文中,我们介绍了一个统一的框架,具有联合通道修剪和重量修剪(JCW),并且在比以前的模型压缩方法的延迟和准确性之间实现更好的静脉前沿。为了完全优化延迟和准确性之间的权衡,我们在JCW框架中开发了一定量身定制的多目标进化算法,这使得一个搜索能够获得各种部署要求的最佳候选架构。广泛的实验表明,JCW在想象集分类数据集上的各种最先进的修剪方法之间实现了更好的折衷和准确性。我们的代码在https://github.com/jcw-anonymous/jcw提供。
translated by 谷歌翻译
Neural Architecture Search (NAS) for automatically finding the optimal network architecture has shown some success with competitive performances in various computer vision tasks. However, NAS in general requires a tremendous amount of computations. Thus reducing computational cost has emerged as an important issue. Most of the attempts so far has been based on manual approaches, and often the architectures developed from such efforts dwell in the balance of the network optimality and the search cost. Additionally, recent NAS methods for image restoration generally do not consider dynamic operations that may transform dimensions of feature maps because of the dimensionality mismatch in tensor calculations. This can greatly limit NAS in its search for optimal network structure. To address these issues, we re-frame the optimal search problem by focusing at component block level. From previous work, it's been shown that an effective denoising block can be connected in series to further improve the network performance. By focusing at block level, the search space of reinforcement learning becomes significantly smaller and evaluation process can be conducted more rapidly. In addition, we integrate an innovative dimension matching modules for dealing with spatial and channel-wise mismatch that may occur in the optimal design search. This allows much flexibility in optimal network search within the cell block. With these modules, then we employ reinforcement learning in search of an optimal image denoising network at a module level. Computational efficiency of our proposed Denoising Prior Neural Architecture Search (DPNAS) was demonstrated by having it complete an optimal architecture search for an image restoration task by just one day with a single GPU.
translated by 谷歌翻译
Network pruning is widely used for reducing the heavy inference cost of deep models in low-resource settings. A typical pruning algorithm is a three-stage pipeline, i.e., training (a large model), pruning and fine-tuning. During pruning, according to a certain criterion, redundant weights are pruned and important weights are kept to best preserve the accuracy. In this work, we make several surprising observations which contradict common beliefs. For all state-of-the-art structured pruning algorithms we examined, fine-tuning a pruned model only gives comparable or worse performance than training that model with randomly initialized weights. For pruning algorithms which assume a predefined target network architecture, one can get rid of the full pipeline and directly train the target network from scratch. Our observations are consistent for multiple network architectures, datasets, and tasks, which imply that: 1) training a large, over-parameterized model is often not necessary to obtain an efficient final model, 2) learned "important" weights of the large model are typically not useful for the small pruned model, 3) the pruned architecture itself, rather than a set of inherited "important" weights, is more crucial to the efficiency in the final model, which suggests that in some cases pruning can be useful as an architecture search paradigm. Our results suggest the need for more careful baseline evaluations in future research on structured pruning methods. We also compare with the "Lottery Ticket Hypothesis" (Frankle & Carbin, 2019), and find that with optimal learning rate, the "winning ticket" initialization as used in Frankle & Carbin (2019) does not bring improvement over random initialization. * Equal contribution. † Work done while visiting UC Berkeley.
translated by 谷歌翻译
量化图像超分辨率的深卷积神经网络大大降低了它们的计算成本。然而,现有的作品既不患有4个或低位宽度的超低精度的严重性能下降,或者需要沉重的微调过程以恢复性能。据我们所知,这种对低精度的漏洞依赖于特征映射值的两个统计观察。首先,特征贴图值的分布每个通道和每个输入图像都变化显着变化。其次,特征映射具有可以主导量化错误的异常值。基于这些观察,我们提出了一种新颖的分布感知量化方案(DAQ),其促进了超低精度的准确训练量化。 DAQ的简单功能确定了具有低计算负担的特征图和权重的动态范围。此外,我们的方法通过计算每个通道的相对灵敏度来实现混合精度量化,而无需涉及任何培训过程。尽管如此,量化感知培训也适用于辅助性能增益。我们的新方法优于最近的培训甚至基于培训的量化方法,以超低精度为最先进的图像超分辨率网络。
translated by 谷歌翻译
基于卷积神经网络(CNN)的现代单图像超分辨率(SISR)系统实现了花哨的性能,而需要巨大的计算成本。在视觉识别任务中对特征冗余的问题进行了很好的研究,但很少在SISR中进行讨论。基于这样的观察,SISR模型中的许多功能也彼此相似,我们建议使用Shift操作来生成冗余功能(即幽灵功能)。与在类似GPU的设备上耗时的深度卷积相比,Shift操作可以为CNN带来实用的推理加速度。我们分析了SISR操作对SISR任务的好处,并根据Gumbel-SoftMax技巧使Shift取向可学习。此外,基于预训练的模型探索了聚类过程,以识别用于生成内在特征的内在过滤器。幽灵功能将通过沿特定方向移动这些内在功能来得出。最后,完整的输出功能是通过将固有和幽灵特征串联在一起来构建的。在几个基准模型和数据集上进行的广泛实验表明,嵌入了所提出方法的非压缩和轻质SISR模型都可以实现与基准的可比性能,并大大降低了参数,拖台和GPU推荐延迟。例如,我们将参数降低46%,FLOPS掉落46%,而GPU推断潜伏期则减少了$ \ times2 $ EDSR网络的42%,基本上是无损的。
translated by 谷歌翻译
In this paper, we propose a novel meta learning approach for automatic channel pruning of very deep neural networks. We first train a PruningNet, a kind of meta network, which is able to generate weight parameters for any pruned structure given the target network. We use a simple stochastic structure sampling method for training the PruningNet. Then, we apply an evolutionary procedure to search for good-performing pruned networks. The search is highly efficient because the weights are directly generated by the trained PruningNet and we do not need any finetuning at search time. With a single PruningNet trained for the target network, we can search for various Pruned Networks under different constraints with little human participation. Compared to the state-of-the-art pruning methods, we have demonstrated superior performances on Mo-bileNet V1/V2 and ResNet. Codes are available on https: //github.com/liuzechun/MetaPruning. This work is done when Zechun Liu and Haoyuan Mu are interns at Megvii Technology.
translated by 谷歌翻译