在本文中,我们提出了使用反事实解释来阐明事实检查预测,以帮助人们理解为什么特定的新闻被确定为假货。在这项工作中,为假新闻产生反事实解释涉及三个步骤:提出好问题,找到矛盾和适当的推理。我们将这个研究问题构成了通过问答(QA)矛盾的理由推理。我们首先向虚假主张提出问题,并从相关证据文件中检索潜在的答案。然后,我们通过使用元素分类器来确定对虚假主张的最矛盾的答案。最后,使用匹配的QA对创建了反事实解释,并具有三种不同的反事实说明表格。实验是在热数据集上进行系统和人类评估的。结果表明,与最先进的方法相比,提出的方法产生了最有用的解释。
translated by 谷歌翻译
Explainable AI (XAI) is widely viewed as a sine qua non for ever-expanding AI research. A better understanding of the needs of XAI users, as well as human-centered evaluations of explainable models are both a necessity and a challenge. In this paper, we explore how HCI and AI researchers conduct user studies in XAI applications based on a systematic literature review. After identifying and thoroughly analyzing 85 core papers with human-based XAI evaluations over the past five years, we categorize them along the measured characteristics of explanatory methods, namely trust, understanding, fairness, usability, and human-AI team performance. Our research shows that XAI is spreading more rapidly in certain application domains, such as recommender systems than in others, but that user evaluations are still rather sparse and incorporate hardly any insights from cognitive or social sciences. Based on a comprehensive discussion of best practices, i.e., common models, design choices, and measures in user studies, we propose practical guidelines on designing and conducting user studies for XAI researchers and practitioners. Lastly, this survey also highlights several open research directions, particularly linking psychological science and human-centered XAI.
translated by 谷歌翻译
我们研究了检查问题的事实,旨在识别给定索赔的真实性。具体而言,我们专注于事实提取和验证(发烧)及其伴随数据集的任务。该任务包括从维基百科检索相关文件(和句子)并验证文件中的信息是否支持或驳斥所索赔的索赔。此任务至关重要,可以是假新闻检测和医疗索赔验证等应用程序块。在本文中,我们以通过以结构化和全面的方式呈现文献来更好地了解任务的挑战。我们通过分析不同方法的技术视角并讨论发热数据集的性能结果,描述了所提出的方法,这是最熟悉的和正式结构化的数据集,就是事实提取和验证任务。我们还迄今为止迄今为止确定句子检索组件的有益损失函数的最大实验研究。我们的分析表明,采样负句对于提高性能并降低计算复杂性很重要。最后,我们描述了开放的问题和未来的挑战,我们激励了未来的任务研究。
translated by 谷歌翻译
可解释的NLP(EXNLP)越来越关注收集人类注释的文本解释。这些解释在三种方面使用下游:作为数据增强,以提高预测任务的性能,因为对培训模型的监督,为他们的预测产生解释,以及评估模型生成的解释的理论。在本次审查中,我们识别65个具有三个主要类别的文本解释的数据集(突出显示,自由文本和结构),组织关于注释每种类型的文献,识别现有收集方法的优势和缺点,并为收集EXNLP数据集提供建议在将来。
translated by 谷歌翻译
随着人工智能系统变得越来越强大和普遍,人们对机器的道德或缺乏道德的关注变得越来越关注。然而,向机器讲授道德是一项艰巨的任务,因为道德仍然是人类中最激烈的争论问题之一,更不用说AI了。但是,部署到数百万用户的现有AI系统已经在做出充满道德影响的决策,这构成了一个看似不可能的挑战:教学机器的道德意义,而人类继续努力努力。为了探索这一挑战,我们介绍了Delphi,这是一个基于深层神经网络的实验框架,直接训练了描述性道德判断,例如,“帮助朋友”通常是不错的,而“帮助朋友传播假新闻”不是。经验结果提供了对机器伦理的承诺和局限性的新见解。面对新的道德情况,德尔菲(Delphi)表现出强大的概括能力,而现成的神经网络模型表现出明显差的判断,包括不公正的偏见,证实了对明确教学机器的道德意义的必要性。然而,德尔菲并不完美,表现出对普遍性偏见和不一致的敏感性。尽管如此,我们还是展示了不完美的Delphi的积极用例,包括在其他不完美的AI系统中将其用作组件模型。重要的是,我们根据著名的道德理论来解释Delphi的运营化,这使我们提出了重要的未来研究问题。
translated by 谷歌翻译
由于信息和错误信息都可以在现代媒体生态系统中传播的速度,事实检查变得越来越重要。因此,研究人员一直在探索如何自动检查,使用基于自然语言处理,机器学习,知识表示以及数据库来自动检查的技术,以自动预测所称的索赔的真实性。在本文中,我们从自然语言处理中调查了自动检查源,并讨论其与相关任务和学科的联系。在此过程中,我们概述了现有数据集和模型,旨在统一给出的各种定义和识别共同概念。最后,我们突出了未来研究的挑战。
translated by 谷歌翻译
There has been a recent resurgence in the area of explainable artificial intelligence as researchers and practitioners seek to make their algorithms more understandable. Much of this research is focused on explicitly explaining decisions or actions to a human observer, and it should not be controversial to say that looking at how humans explain to each other can serve as a useful starting point for explanation in artificial intelligence. However, it is fair to say that most work in explainable artificial intelligence uses only the researchers' intuition of what constitutes a 'good' explanation. There exists vast and valuable bodies of research in philosophy, psychology, and cognitive science of how people define, generate, select, evaluate, and present explanations, which argues that people employ certain cognitive biases and social expectations towards the explanation process. This paper argues that the field of explainable artificial intelligence should build on this existing research, and reviews relevant papers from philosophy, cognitive psychology/science, and social psychology, which study these topics. It draws out some important findings, and discusses ways that these can be infused with work on explainable artificial intelligence.
translated by 谷歌翻译
许多政府举措(例如欧盟的GDPR)正在得出结论,即现代软件系统的越来越复杂程度必须与对这些工具的影响评估的一些权利和指标形成鲜明对比,使人们能够理解和监督产出自动化决策系统。可解释的ai诞生于允许人类探索和理解复杂系统的内部工作的途径。但是,建立什么是解释和客观地评估可解释性,不是琐碎的任务。通过本文,我们提出了一种新的模型 - 不可知性的指标,以测量以客观方式测量(正确)信息的解释程度,利用普通语言哲学的特定理论模型,称为ACHINSTEIN的解释理论,通过依赖于算法实现知识图提取和信息检索的深语模型。为了了解这种度量是否实际表现为可解释性,我们已经设计了一些实验和用户研究,涉及超过160名参与者评估了使用包括人工神经网络的着名AI技术的医疗保健和金融的基于医疗保健和金融的基于医疗保健系统和treeshap。我们获得的结果非常令人鼓舞,这表明我们拟议的测量可解释程度的指标对若干情景是强大的,并且最终可以利用自动决策系统的合法影响评估。
translated by 谷歌翻译
假新闻的迅速增加,这对社会造成重大损害,触发了许多假新闻相关研究,包括开发假新闻检测和事实验证技术。这些研究的资源主要是从Web数据中获取的公共数据集。我们通过三个观点调查了与假新闻研究相关的118个数据集:(1)假新闻检测,(2)事实验证,(3)其他任务;例如,假新闻和讽刺检测分析。我们还详细描述了他们的利用任务及其特征。最后,我们突出了假新闻数据集建设中的挑战以及解决这些挑战的一些研究机会。我们的调查通过帮助研究人员找到合适的数据集来促进假新闻研究,而无需重新发明轮子,从而提高了深度的假新闻研究。
translated by 谷歌翻译
了解文本中表达的态度,也称为姿态检测,在旨在在线检测虚假信息的系统中起重要作用,无论是错误信息(无意的假)或虚假信息(故意错误地蔓延,恶意意图)。姿态检测已经以不同的方式在文献中框架,包括(a)作为事实检查,谣言检测和检测先前的事实检查的权利要求,或(b)作为其自己的任务的组件;在这里,我们看看两者。虽然已经进行了与其他相关任务的突出姿态检测,但诸如论证挖掘和情绪分析之类的其他相关任务,但没有调查姿态检测和错误和缺陷检测之间的关系。在这里,我们的目标是弥合这个差距。特别是,我们在焦点中审查和分析了该领域的现有工作,焦点中的错误和不忠实,然后我们讨论了汲取的经验教训和未来的挑战。
translated by 谷歌翻译
In this paper we introduce a new publicly available dataset for verification against textual sources, FEVER: Fact Extraction and VERification. It consists of 185,445 claims generated by altering sentences extracted from Wikipedia and subsequently verified without knowledge of the sentence they were derived from.The claims are classified as SUPPORTED, RE-FUTED or NOTENOUGHINFO by annotators achieving 0.6841 in Fleiss κ. For the first two classes, the annotators also recorded the sentence(s) forming the necessary evidence for their judgment. To characterize the challenge of the dataset presented, we develop a pipeline approach and compare it to suitably designed oracles. The best accuracy we achieve on labeling a claim accompanied by the correct evidence is 31.87%, while if we ignore the evidence we achieve 50.91%. Thus we believe that FEVER is a challenging testbed that will help stimulate progress on claim verification against textual sources.
translated by 谷歌翻译
我们介绍了Sparrow,这是一个寻求信息的对话代理,与提示的语言模型基线相比,训练有素,更有帮助,正确和无害。我们使用从人类反馈中的强化学习来培训我们的模型,以帮助人类评估者判断代理人的行为。首先,为了使我们的代理人更有帮助和无害,我们将良好对话的要求分解为代理人应遵循的自然语言规则,并分别向评估者询问每个规则。我们证明,这种崩溃使我们能够收集对代理行为的更多针对性的人类判断,并允许更有效的规则条件奖励模型。其次,我们的代理商在收集对模型声明的偏好判决时提供了支持事实主张的来源的证据。对于事实问题,麻雀提供的证据支持了78%的时间。比基线比基线更享受麻雀,同时对人类的对抗性探测更具弹性,在探测时只有8%的时间违反了我们的规则。最后,我们进行了广泛的分析,表明尽管我们的模型学会遵守我们的规则,但它可以表现出分布偏见。
translated by 谷歌翻译
Natural Language Generation (NLG) has improved exponentially in recent years thanks to the development of sequence-to-sequence deep learning technologies such as Transformer-based language models. This advancement has led to more fluent and coherent NLG, leading to improved development in downstream tasks such as abstractive summarization, dialogue generation and data-to-text generation. However, it is also apparent that deep learning based generation is prone to hallucinate unintended text, which degrades the system performance and fails to meet user expectations in many real-world scenarios. To address this issue, many studies have been presented in measuring and mitigating hallucinated texts, but these have never been reviewed in a comprehensive manner before. In this survey, we thus provide a broad overview of the research progress and challenges in the hallucination problem in NLG. The survey is organized into two parts: (1) a general overview of metrics, mitigation methods, and future directions; and (2) an overview of task-specific research progress on hallucinations in the following downstream tasks, namely abstractive summarization, dialogue generation, generative question answering, data-to-text generation, machine translation, and visual-language generation. This survey serves to facilitate collaborative efforts among researchers in tackling the challenge of hallucinated texts in NLG.
translated by 谷歌翻译
由于算法预测对人类的影响增加,模型解释性已成为机器学习(ML)的重要问题。解释不仅可以帮助用户了解为什么ML模型做出某些预测,还可以帮助用户了解这些预测如何更改。在本论文中,我们研究了从三个有利位置的ML模型的解释性:算法,用户和教学法,并为解释性问题贡献了一些新颖的解决方案。
translated by 谷歌翻译
情绪分析中最突出的任务是为文本分配情绪,并了解情绪如何在语言中表现出来。自然语言处理的一个重要观察结果是,即使没有明确提及情感名称,也可以通过单独参考事件来隐式传达情绪。在心理学中,被称为评估理论的情感理论类别旨在解释事件与情感之间的联系。评估可以被形式化为变量,通过他们认为相关的事件的人们的认知评估来衡量认知评估。其中包括评估事件是否是新颖的,如果该人认为自己负责,是否与自己的目标以及许多其他人保持一致。这样的评估解释了哪些情绪是基于事件开发的,例如,新颖的情况会引起惊喜或不确定后果的人可能引起恐惧。我们在文本中分析了评估理论对情绪分析的适用性,目的是理解注释者是否可以可靠地重建评估概念,如果可以通过文本分类器预测,以及评估概念是否有助于识别情感类别。为了实现这一目标,我们通过要求人们发短信描述触发特定情绪并披露其评估的事件来编译语料库。然后,我们要求读者重建文本中的情感和评估。这种设置使我们能够衡量是否可以纯粹从文本中恢复情绪和评估,并为判断模型的绩效指标提供人体基准。我们将文本分类方法与人类注释者的比较表明,两者都可以可靠地检测出具有相似性能的情绪和评估。我们进一步表明,评估概念改善了文本中情绪的分类。
translated by 谷歌翻译
创意支持工具中的反馈可以帮助人群推动他们的意思。但是,目前的反馈方法需要从促进者或同行中进行人力评估。这不可扩展到大人群。我们提出可解释的定向多样性来自动预测观点的质量和多样性分数,并提供AI解释 - 归因,对比归因和反事实建议 - 反馈意见(低),以及如何获得更高的分数。由于用户迭代地提高其想象,这些解释提供了多面反馈。我们进行了形成性和控制的用户研究,以了解解释的使用和有用性,以提高观念多样性和质量。用户感谢解释反馈帮助重点努力,并提供了改进的方向。这导致解释与没有反馈或反馈仅具有预测的反馈和反馈相比提高了多样性。因此,我们的方法为解释和丰富的反馈开辟了可解释的AI的机会,以获得迭代人群思想和创造力支​​持工具。
translated by 谷歌翻译
Deep Learning and Machine Learning based models have become extremely popular in text processing and information retrieval. However, the non-linear structures present inside the networks make these models largely inscrutable. A significant body of research has focused on increasing the transparency of these models. This article provides a broad overview of research on the explainability and interpretability of natural language processing and information retrieval methods. More specifically, we survey approaches that have been applied to explain word embeddings, sequence modeling, attention modules, transformers, BERT, and document ranking. The concluding section suggests some possible directions for future research on this topic.
translated by 谷歌翻译
自动错误通常涉及培训数据和学习过程,调试机器学习模型很难。如果我们没有关于模型如何实际工作的线索,这变得更加困难。在这项调查中,我们审查了利用解释的论文使人类提供反馈和调试NLP模型。我们称这个问题解释为基础的人类调试(EBHD)。特别是,我们沿着EBHD的三个维度(错误上下文,工作流程和实验设置)分类和讨论现有工作,编译EBHD组件如何影响反馈提供商的调查结果,并突出可能是未来的研究方向的打开问题。
translated by 谷歌翻译
随着近期自然语言生成(NLG)模型的各种应用程序的改进,它变得必须具有识别和评估NLG输出是否仅共享关于外部世界的可验证信息的手段。在这项工作中,我们提出了一个归属于识别的来源(AIS)的新评估框架,用于评估自然语言生成模型的输出,当这种输出涉及外部世界时。我们首先定义AIS,并引入两级注释管道,用于允许注释器根据AIS指南适当地评估模型输出。通过人为评估研究,我们在三个代数据集(会话QA域中的两个中和总结一下,概括地验证了这种方法,表明AIS可以作为测量模型生成的语句是否支持基础来源的常见框架。我们释放人类评估研究指南。
translated by 谷歌翻译
Prior work has identified a resilient phenomenon that threatens the performance of human-AI decision-making teams: overreliance, when people agree with an AI, even when it is incorrect. Surprisingly, overreliance does not reduce when the AI produces explanations for its predictions, compared to only providing predictions. Some have argued that overreliance results from cognitive biases or uncalibrated trust, attributing overreliance to an inevitability of human cognition. By contrast, our paper argues that people strategically choose whether or not to engage with an AI explanation, demonstrating empirically that there are scenarios where AI explanations reduce overreliance. To achieve this, we formalize this strategic choice in a cost-benefit framework, where the costs and benefits of engaging with the task are weighed against the costs and benefits of relying on the AI. We manipulate the costs and benefits in a maze task, where participants collaborate with a simulated AI to find the exit of a maze. Through 5 studies (N = 731), we find that costs such as task difficulty (Study 1), explanation difficulty (Study 2, 3), and benefits such as monetary compensation (Study 4) affect overreliance. Finally, Study 5 adapts the Cognitive Effort Discounting paradigm to quantify the utility of different explanations, providing further support for our framework. Our results suggest that some of the null effects found in literature could be due in part to the explanation not sufficiently reducing the costs of verifying the AI's prediction.
translated by 谷歌翻译