在临床实践中,MR图像通常首先在扫描后长期看到辐射药剂。如果图像质量不充分,则患者必须返回额外的扫描,或者呈现次优解释。自动图像质量评估(IQA)将实现实时修复。对于MRI的现有IQA工作仅提供一般的质量得分,不可知论是对低质量扫描的原因和解决方案。此外,放射科医师的图像质量要求随扫描类型和诊断任务而异。因此,相同的分数可能对不同的扫描具有不同的影响。我们提出了一个训练训练的多任务CNN模型的框架,并用校准标签推断出来。由人类投入校准的标签遵循明确明确和高效的标签任务。图像统治者解决了不同的质量标准,并提供了一种从CNN中解释原始分数的具体方法。该模型支持对MRI中两个最常见的工件的评估:噪音和运动。它达到了约90%的准确度,比以前的最佳方法更好地达到6%,比噪声评估的人类专家更好3%。我们的实验表明,标签校准,图像统治者和多任务培训提高了模型的性能和概括性。
translated by 谷歌翻译
图像质量评估(IQA)算法旨在再现人类对图像质量的看法。图像增强,生成和恢复模型的日益普及促使开发了许多方法来评估其性能。但是,大多数IQA解决方案旨在预测通用域中的图像质量,并适用于特定区域,例如医学成像,保持可疑。此外,对于特定任务的这些IQA指标的选择通常涉及故意引起的扭曲,例如手动添加噪声或人工模糊。然而,随后选择的指标被用来判断现实生活中计算机视觉模型的输出。在这项工作中,我们渴望通过对迄今为止的磁共振成像(MRI)进行最广泛的IQA评估研究来填补这些空白(14,700个主观得分)。我们使用经过培训的神经网络模型的输出,以解决与MRI相关的问题,包括扫描加速度,运动校正和DENOSISING中的图像重建。我们的重点是反映放射科医生对重建图像的看法,评估了MRI扫描质量的最具诊断性影响的标准:信噪比,对比度与噪声比率和人工制品的存在。七位训练有素的放射科医生评估了这些扭曲的图像,其判决随后与35个不同的图像质量指标(考虑到全参考,无参考和基于分布的指标)相关。对于所有被认为是解剖学和目标任务的三个拟议质量标准,发现最高的表现者 - DIST,HAARPSI,VSI和FID-VGG16 - 在三个提出的质量标准中都是有效的。
translated by 谷歌翻译
大型医学成像数据集变得越来越多。这些数据集中的一个普遍挑战是确保每个样本满足没有重要人工制品的最低质量要求。尽管已经开发出广泛的现有自动方法来识别医学成像中的缺陷和人工制品,但它们主要依赖于渴望数据的方法。特别是,缺乏可用于培训的手工艺品的足够扫描,在临床研究中设计和部署机器学习方面造成了障碍。为了解决这个问题,我们提出了一个具有四个主要组成部分的新颖框架:(1)一组受磁共振物理启发的手工艺发电机,以损坏大脑MRI扫描和增强培训数据集,(2)一组抽象和工程的功能,紧凑地表示图像,(3)一个特征选择过程,取决于人工制品的类别以提高分类性能,以及(4)一组受过训练以识别人工制品的支持向量机(SVM)分类器。我们的新颖贡献是三重的:首先,我们使用新型的基于物理的人工制品发生器来生成以受控的人工制品作为数据增强技术的合成脑MRI扫描。这将避免使用稀有人工制品的劳动密集型收集和标记过程。其次,我们提出了开发的大量抽象和工程图像特征,以识别9种不同的结构MRI伪像。最后,我们使用一个基于人工制品的功能选择块,该块,对于每类的人工制品,可以找到提供最佳分类性能的功能集。我们对具有人工生成的人工制品的大量数据扫描进行了验证实验,并且在一项多发性硬化症临床试验中,专家确定了真实的人工制品,这表明拟议管道表现优于传统方法。
translated by 谷歌翻译
我们提出了明确结合频率和图像特征表示的神经网络层,并表明它们可以用作频率空间数据重建的多功能构建块。我们的工作是由MRI习得引起的挑战所激发的,该挑战是信号是所需图像的傅立叶变换。提出的联合学习方案既可以校正频率空间的天然伪像,又可以操纵图像空间表示,以重建网络各层的相干图像结构。这与图像重建的大多数当前深度学习方法形成鲜明对比,该方法分别处理频率和图像空间特征,并且通常在两个空间之一中仅运行。我们证明了联合卷积学习在各种任务中的优势,包括运动校正,denosing,从不足采样的采集中重建,以及对模拟和现实世界多层MRI数据的混合采样和运动校正。联合模型在所有任务和数据集中都始终如一地产生高质量的输出图像。当整合到具有物理启发的数据一致性约束的最终采样重建的情况下,将其集成到艺术风化的优化网络中时,提议的体系结构显着改善了优化景观,从而产生了减少训练时间的数量级。该结果表明,联合表示特别适合深度学习网络中的MRI信号。我们的代码和预算模型可在https://github.com/nalinimsingh/interlacer上公开获得。
translated by 谷歌翻译
加速的MRI从稀疏采样的信号数据中重建了临床解剖学的图像,以减少患者扫描时间。尽管最近的作品利用了深入的学习来完成这项任务,但这种方法通常只在没有信号损坏或资源限制的模拟环境中进行了探索。在这项工作中,我们探索了神经网络MRI图像重建器的增强,以增强其临床相关性。也就是说,我们提出了一个用于检测图像源的Convnet模型,该模型可以实现分类器$ f_2 $得分为$ 79.1 \%$ $。我们还证明,具有可变加速度因子的MR信号数据的培训重建器可以在临床患者扫描期间提高其平均性能,最高$ 2 \%$。当模型学会重建多个解剖和方向的MR图像时,我们提供损失功能来克服灾难性的遗忘。最后,我们提出了一种使用模拟幻影数据在临床获取数据集和计算功能有限的情况下使用模拟幻影数据预先培训重建器的方法。我们的结果为加速MRI的临床适应提供了潜在的途径。
translated by 谷歌翻译
深度学习方法已成为重建MR重建的最新采样的状态。特别是对于地面真理不可行或不可能的情况,要获取完全采样的数据,重建的自我监督的机器学习方法正在越来越多地使用。但是,在验证此类方法及其普遍性的验证中的潜在问题仍然没有得到充实的态度。在本文中,我们研究了自制算法验证未采样MR图像的重要方面:对前瞻性重建的定量评估,前瞻性和回顾性重建之间的潜在差异,常用的定量衡量标准的适用性和普遍性。研究了两种基于自我监督的denoising和先验的深层图像的自我监督算法。将这些方法与使用体内和幻影数据的最小二乘拟合以及压缩感测重建进行比较。它们的推广性通过前瞻性采样的数据与培训不同的数据进行了测试。我们表明,相对于回顾性重建/地面真理,前瞻性重建可能表现出严重的失真。此外,与感知度量相比,与像素定量指标的定量指标可能无法准确捕获感知质量的差异。此外,所有方法均显示出泛化的潜力。然而,与其他变化相比,概括性的影响更大。我们进一步表明,无参考图像指标与人类对图像质量的评级很好地对应,以研究概括性。最后,我们证明了经过调整的压缩感测重建和学习的DeNoising在所有数据上都相似地执行。
translated by 谷歌翻译
基于深度学习的脑磁共振成像(MRI)重建方法有可能加速MRI采集过程。尽管如此,科学界缺乏适当的基准,以评估高分辨率大脑图像的MRI重建质量,并评估这些所提出的算法在存在小而且预期的数据分布班次存在下的表现。多线圈磁共振图像(MC-MRI)重建挑战提供了一种基准,其目的在于使用高分辨率,三维,T1加权MRI扫描的大型数据集。挑战有两个主要目标:1)比较该数据集和2)上的不同的MRI重建模型,并评估这些模型的概括性,以通过不同数量的接收器线圈获取的数据。在本文中,我们描述了挑战实验设计,并总结了一系列基线和艺术脑MRI重建模型的结果。我们提供有关目前MRI重建最先进的相关比较信息,并突出挑战在更广泛的临床采用之前获得所需的普遍模型。 MC-MRI基准数据,评估代码和当前挑战排行榜可公开可用。它们为脑MRI重建领域的未来发展提供了客观性能评估。
translated by 谷歌翻译
基于分数的扩散模型为使用数据分布的梯度建模图像提供了一种强大的方法。利用学到的分数函数为先验,在这里,我们引入了一种从条件分布中进行测量的方法,以便可以轻松地用于求解成像中的反问题,尤其是用于加速MRI。简而言之,我们通过denoising得分匹配来训练连续的时间依赖分数函数。然后,在推论阶段,我们在数值SDE求解器和数据一致性投影步骤之间进行迭代以实现重建。我们的模型仅需要用于训练的幅度图像,但能够重建复杂值数据,甚至扩展到并行成像。所提出的方法是不可知论到子采样模式,可以与任何采样方案一起使用。同样,由于其生成性质,我们的方法可以量化不确定性,这是标准回归设置不可能的。最重要的是,我们的方法还具有非常强大的性能,甚至击败了经过全面监督训练的模型。通过广泛的实验,我们在质量和实用性方面验证了我们方法的优势。
translated by 谷歌翻译
Manual prescription of the field of view (FOV) by MRI technologists is variable and prolongs the scanning process. Often, the FOV is too large or crops critical anatomy. We propose a deep-learning framework, trained by radiologists' supervision, for automating FOV prescription. An intra-stack shared feature extraction network and an attention network are used to process a stack of 2D image inputs to generate output scalars defining the location of a rectangular region of interest (ROI). The attention mechanism is used to make the model focus on the small number of informative slices in a stack. Then the smallest FOV that makes the neural network predicted ROI free of aliasing is calculated by an algebraic operation derived from MR sampling theory. We retrospectively collected 595 cases between February 2018 and February 2022. The framework's performance is examined quantitatively with intersection over union (IoU) and pixel error on position, and qualitatively with a reader study. We use the t-test for comparing quantitative results from all models and a radiologist. The proposed model achieves an average IoU of 0.867 and average ROI position error of 9.06 out of 512 pixels on 80 test cases, significantly better (P<0.05) than two baseline models and not significantly different from a radiologist (P>0.12). Finally, the FOV given by the proposed framework achieves an acceptance rate of 92% from an experienced radiologist.
translated by 谷歌翻译
在本文中,我们开发了一种高效的回顾性深度学习方法,称为堆叠U-网,具有自助前沿,解决MRI中刚性运动伪影的问题。拟议的工作利用损坏的图像本身使用额外的知识前瞻,而无需额外的对比度数据。所提出的网络通过共享来自相同失真对象的连续片的辅助信息来学习错过的结构细节。我们进一步设计了一种堆叠的U-网的细化,便于保持图像空间细节,从而提高了像素到像素依赖性。为了执行网络培训,MRI运动伪像的模拟是不可避免的。我们使用各种类型的图像前瞻呈现了一个密集的分析:来自同一主题的其他图像对比的提出的自助前锋和前锋。实验分析证明了自助前锋的有效性和可行性,因为它不需要任何进一步的数据扫描。
translated by 谷歌翻译
可解释性和鲁棒性必须在临床应用中整合加速磁共振成像(MRI)重建的机器学习方法。这样做会允许快速高质量的解剖和病理学成像。数据一致性(DC)对于多模态数据的泛化至关重要,以及检测病理学的鲁棒性。这项工作提出了独立复发推理机(CIRIM)的级联,通过展开优化来评估DC,通过梯度下降,并通过设计的术语明确地明确。我们对CIRIM与其他展开的优化方法进行广泛的比较,是端到端变分网络(E2EVN)和轮辋,以及UNET和压缩感测(CS)。评估是分两个阶段完成的。首先,评估关于多次训练的MRI模型的学习,即用{t_1} $ - 加权和平凡对比,以及$ {t_2} $ - 加权膝盖数据。其次,在通过3D Flair MRI数据中重建依赖多发性硬化(MS)患者的3D Flair MRI数据来测试鲁棒性。结果表明,CIRIM在隐式强制执行DC时表现最佳,而E2EVN需要明确制定的DC。 CIRIM在重建临床MS数据时显示出最高病变对比度分辨率。与CS相比,性能提高了大约11%,而重建时间是二十次减少。
translated by 谷歌翻译
目的:并行成像通过用一系列接收器线圈获取其他灵敏度信息,从而加速了磁共振成像(MRI)数据,从而降低了相位编码步骤。压缩传感磁共振成像(CS-MRI)在医学成像领域中获得了普及,因为其数据要求较少,而不是平行成像。并行成像和压缩传感(CS)均通过最大程度地减少K空间中捕获的数据量来加快传统MRI获取。由于采集时间与样品的数量成反比,因此从缩短的K空间样品中的图像的反向形成会导致收购更快,但具有混乱的伪像。本文提出了一种新型的生成对抗网络(GAN),即雷德格尔(Recgan-gr)受到多模式损失的监督,以消除重建的图像。方法:与现有的GAN网络相反,我们提出的方法引入了一种新型的发电机网络,即与双域损耗函数集成的弹药网络,包括加权幅度和相位损耗函数以及基于平行成像的损失,即Grappa一致性损失。提出了K空间校正块,以使GAN网络自动化生成不必要的数据,从而使重建过程的收敛性更快。结果:全面的结果表明,拟议的Recgan-GR在基于GAN的方法中的PSNR有4 dB的改善,并且在文献中可用的传统最先进的CNN方法中有2 dB的改进。结论和意义:拟议的工作有助于显着改善低保留数据的图像质量,从而更快地获取了5倍或10倍。
translated by 谷歌翻译
肺部以外的视野(FOV)组织截断在常规的肺筛查计算机断层扫描(CT)中很常见。这对机会性CT的身体组成(BC)评估构成了局限性,因为缺少关键的解剖结构。传统上,扩展CT的FOV被认为是使用有限数据的CT重建问题。但是,这种方法依赖于应用程序中可能无法使用的投影域数据。在这项工作中,我们从语义图像扩展角度提出问题,该角度仅需要图像数据作为输入。提出的两阶段方法根据完整体的估计范围识别新的FOV边框,并在截短区域中渗出了缺失的组织。使用在FOV中具有完整主体的CT切片对训练样品进行模拟,从而使模型开发自制。我们使用有限FOV的肺筛选CT评估了所提出的方法在自动BC评估中的有效性。提出的方法有效地恢复了缺失的组织并减少了FOV组织截断引入的BC评估误差。在大规模肺部筛查CT数据集的BC评估中,这种校正既可以提高受试者内的一致性和与人体测量近似值的相关性。已开发的方法可在https://github.com/masilab/s-efov上获得。
translated by 谷歌翻译
晚期钆增强磁共振成像(LGE MRI)通常用于可视化和量化左心房(LA)疤痕。疤痕的位置和程度提供了心理生理学和心房颤动进展的重要信息(AF)。因此,LGE MRI的La Scar分段和量化可用于AF患者的计算机辅助诊断和治疗分层。由于手动描绘可能是耗时的,并且经过专家内和专家间变异性,因此非常需要自动化这种计算,这然而仍然仍然具有挑战性和研究。本文旨在为La腔,墙壁,瘢痕和消融差距分割和LGE MRI的定量提供系统审查,以及AF研究的相关文献。具体而言,我们首先总结AF相关的成像技术,特别是LGE MRI。然后,我们详细介绍了四个计算任务的方法,并总结了每个任务中应用的验证策略。最后,概述了未来可能的未来发展,简要调查了上述方法的潜在临床应用。审查表明,该主题的研究仍处于早期阶段。虽然已经提出了几种方法,但特别是对于LA分割,由于与图像采集的高度变化相关的性能问题和图像采集差异有关的性能问题,仍有很大的算法发展。
translated by 谷歌翻译
临床实践中使用的医学图像是异质的,与学术研究中研究的扫描质量不同。在解剖学,伪影或成像参数不寻常或方案不同的极端情况下,预处理会分解。最需要对这些变化的方法可靠。提出了一种新颖的深度学习方法,以将人脑快速分割为132个区域。提出的模型使用有效的U-NET型网络,并从不同视图和分层关系的交点上受益,以在端到端训练期间融合正交2D平面和脑标签。部署了弱监督的学习,以利用部分标记的数据来进行整个大脑分割和颅内体积(ICV)的估计。此外,数据增强用于通过生成具有较高的脑扫描的磁共振成像(MRI)数据来扩展模型训练,同时保持数据隐私。提出的方法可以应用于脑MRI数据,包括头骨或任何其他工件,而无需预处理图像或性能下降。与最新的一些实验相比,使用了不同的Atlases的几项实验,以评估受过训练模型的分割性能,并且与不同内部和不同内部和不同内部方法的现有方法相比,结果显示了较高的分割精度和鲁棒性。间域数据集。
translated by 谷歌翻译
物理驱动的深度学习方法已成为计算磁共振成像(MRI)问题的强大工具,将重建性能推向新限制。本文概述了将物理信息纳入基于学习的MRI重建中的最新发展。我们考虑了用于计算MRI的线性和非线性正向模型的逆问题,并回顾了解决这些方法的经典方法。然后,我们专注于物理驱动的深度学习方法,涵盖了物理驱动的损失功能,插件方法,生成模型和展开的网络。我们重点介绍了特定于领域的挑战,例如神经网络的实现和复杂值的构建基块,以及具有线性和非线性正向模型的MRI转换应用。最后,我们讨论常见问题和开放挑战,并与物理驱动的学习与医学成像管道中的其他下游任务相结合时,与物理驱动的学习的重要性联系在一起。
translated by 谷歌翻译
目的:开发一种适用于具有非平滑相位变化的扩散加权(DW)图像的鲁棒部分傅里叶(PF)重建算法。方法:基于展开的近端分裂算法,导出了一种神经网络架构,其在经常复卷卷积实现的数据一致性操作和正则化之间交替。为了利用相关性,在考虑到置换方面,共同重建相同切片的多重重复。该算法在60名志愿者的DW肝脏数据上培训,并回顾性和预期的不同解剖和分辨率的次样本数据评估。结果:该方法能够在定量措施以及感知图像质量方面具有显着优异地优于追溯子采样数据的传统PF技术。在这种情况下,发现重复的联合重建以及特定类型的经常性网络展开展开是有益的重建质量。在预期的PF采样数据上,所提出的方法使得DW成像能够在不牺牲图像分辨率或引入额外的伪影的情况下进行DW成像。或者,它可以用来对抗具有更高分辨率的获取的TE增加。此外,可以向展示训练集中的解剖学和对比度显示普遍性的脑数据。结论:这项工作表明,即使在易于相位变化的解剖中的强力PF因子中,DW数据的强大PF重建也是可行的。由于所提出的方法不依赖于阶段的平滑度前沿,而是使用学习的经常性卷积,因此可以避免传统PF方法的伪像。
translated by 谷歌翻译
由于组织和骨骼之间的相似性,在人解剖结构中广泛看到了全球相关性。由于近距离质子密度和T1/T2参数,这些相关性反映在磁共振成像(MRI)扫描中。此外,为了实现加速的MRI,k空间数据的采样不足,从而导致全球混叠伪像。卷积神经网络(CNN)模型被广泛用于加速MRI重建,但是由于卷积操作的固有位置,这些模型在捕获全球相关性方面受到限制。基于自发的变压器模型能够捕获图像特征之间的全局相关性,但是,变压器模型对MRI重建的当前贡献是微小的。现有的贡献主要提供CNN转换器混合解决方案,并且很少利用MRI的物理学。在本文中,我们提出了一种基于物理的独立(无卷积)变压器模型,标题为“多头级联SWIN变压器(MCSTRA),用于加速MRI重建。 MCSTRA将几种相互关联的MRI物理相关概念与变压器网络相结合:它通过移动的窗口自我发场机制利用了全局MR特征;它使用多头设置分别提取属于不同光谱组件的MR特征;它通过级联的网络在中间脱氧和K空间校正之间进行迭代,该网络具有K空间和中间损耗计算中的数据一致性;此外,我们提出了一种新型的位置嵌入生成机制,以使用对应于底面采样掩码的点扩散函数来指导自我发作。我们的模型在视觉上和定量上都大大优于最先进的MRI重建方法,同时描述了改善的分辨率和去除词法。
translated by 谷歌翻译
用于医学图像重建的深度神经网络传统上使用高质量的地基图像作为训练目标训练。最近关于噪声的工作(N2N)已经示出了使用与具有地面真理的多个噪声测量的潜力。然而,现有的基于N2N的方法不适合于从经历非身份变形的物体的测量来学习。本文通过补偿对象变形来提出用于训练深层重建网络的变形补偿学习(DecoLearn)方法来解决此问题。DecoLearn的一个关键组件是一个深度登记模块,它与深度重建网络共同培训,没有任何地理监督。我们在模拟和实验收集的磁共振成像(MRI)数据上验证了甲板,并表明它显着提高了成像质量。
translated by 谷歌翻译
机器学习和计算机视觉技术近年来由于其自动化,适合性和产生惊人结果的能力而迅速发展。因此,在本文中,我们调查了2014年至2022年之间发表的关键研究,展示了不同的机器学习算法研究人员用来分割肝脏,肝肿瘤和肝脉管结构的研究。我们根据感兴趣的组织(肝果,肝肿瘤或肝毒剂)对被调查的研究进行了划分,强调了同时解决多个任务的研究。此外,机器学习算法被归类为受监督或无监督的,如果属于某个方案的工作量很大,则将进一步分区。此外,对文献和包含上述组织面具的网站发现的不同数据集和挑战进行了彻底讨论,强调了组织者的原始贡献和其他研究人员的贡献。同样,在我们的评论中提到了文献中过度使用的指标,这强调了它们与手头的任务的相关性。最后,强调创新研究人员应对需要解决的差距的关键挑战和未来的方向,例如许多关于船舶分割挑战的研究的稀缺性以及为什么需要早日处理他们的缺席。
translated by 谷歌翻译