聚合邻居功能对于点云分类至关重要。在现有的工作中,不可避免地会选择云中的每个点作为多个聚合中心的邻居,因为所有中心将独立地从整个点云中收集邻居功能。因此,每个点必须反复参与计算,并在内存中生成冗余重复项,从而导致密集的计算成本和记忆消耗。同时,为了追求更高的准确性,以前的方法通常依靠复杂的局部聚合器来提取精细的几何表示,这进一步减慢了分类管道。为了解决这些问题,我们提出了一个新的线性复杂性的本地聚合器,用于点云分类,以应用为应用。具体而言,我们引入一个辅助容器作为锚点,以在源点和聚合中心之间进行交换。每个源点只能将其功能推到一个辅助容器,每个中心点仅从一个辅助容器中拉出特征。这避免了每个源点的重新计算问题。为了促进云点的局部结构的学习,我们使用在线正常估计模块提供可解释的几何信息以增强我们的应用程序建模能力。我们的构建网络比所有以前的基线都更有效,并且在仍然消耗较低的内存的同时,它的空间清晰。合成数据集和真实数据集的实验表明,APP-NET与其他网络相当。它可以每秒处理超过10,000个样本,而单个GPU上的内存少于10GB。我们将在https://github.com/mcg-nju/app-net中发布代码。
translated by 谷歌翻译
学习地区内部背景和区域间关系是加强点云分析的特征表示的两项有效策略。但是,在现有方法中没有完全强调的统一点云表示的两种策略。为此,我们提出了一种名为点关系感知网络(PRA-NET)的小说框架,其由区域内结构学习(ISL)模块和区域间关系学习(IRL)模块组成。ISL模块可以通过可差的区域分区方案和基于代表的基于点的策略自适应和有效地将本地结构信息动态地集成到点特征中,而IRL模块可自适应和有效地捕获区域间关系。在涵盖形状分类,关键点估计和部分分割的几个3D基准测试中的广泛实验已经验证了PRA-Net的有效性和泛化能力。代码将在https://github.com/xiwuchen/pra-net上获得。
translated by 谷歌翻译
通过当地地区的点特征聚合来捕获的细粒度几何是对象识别和场景理解在点云中的关键。然而,现有的卓越点云骨架通常包含最大/平均池用于局部特征聚集,这在很大程度上忽略了点的位置分布,导致细粒结构组装不足。为了缓解这一瓶颈,我们提出了一个有效的替代品,可以使用新颖的图形表示明确地模拟了本地点之间的空间关系,并以位置自适应方式聚合特征,从而实现位置敏感的表示聚合特征。具体而言,Papooling分别由两个关键步骤,图形结构和特征聚合组成,分别负责构造与将中心点连接的边缘与本地区域中的每个相邻点连接的曲线图组成,以将它们的相对位置信息映射到通道 - 明智的细心权重,以及基于通过图形卷积网络(GCN)的生成权重自适应地聚合局部点特征。 Papooling简单而且有效,并且足够灵活,可以随时为PointNet ++和DGCNN等不同的流行律源,作为即插即说运算符。关于各种任务的广泛实验,从3D形状分类,部分分段对场景分割良好的表明,伪装可以显着提高预测准确性,而具有最小的额外计算开销。代码将被释放。
translated by 谷歌翻译
Point cloud learning has lately attracted increasing attention due to its wide applications in many areas, such as computer vision, autonomous driving, and robotics. As a dominating technique in AI, deep learning has been successfully used to solve various 2D vision problems. However, deep learning on point clouds is still in its infancy due to the unique challenges faced by the processing of point clouds with deep neural networks. Recently, deep learning on point clouds has become even thriving, with numerous methods being proposed to address different problems in this area. To stimulate future research, this paper presents a comprehensive review of recent progress in deep learning methods for point clouds. It covers three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation. It also presents comparative results on several publicly available datasets, together with insightful observations and inspiring future research directions.
translated by 谷歌翻译
由于其稀疏性和不规则性,点云处理是一个具有挑战性的任务。现有作品在本地特征聚合器或全局几何架构上引入精致的设计,但很少结合两个优点。我们提出了与高频融合(DSPoint)的双模点云识别,通过同时在体素和点上运行来提取本地全局功能。我们扭转了常规设计对体素和注意点的应用卷积。具体而言,我们通过通道尺寸解开点特征,用于双尺度处理:一个逐个明智的卷积,用于细粒度的几何解析,另一个由Voxel-Wise全球关注远程结构探索。我们设计了一个共同关注的融合模块,用于混合本地 - 全局模态,通过传送高频坐标信息来进行尺度间跨模型交互。广泛采用的ModelNet40,ShapEnet​​和S3DIS上的实验和消融展示了我们的DSPoint的最先进的性能。
translated by 谷歌翻译
Point cloud analysis is challenging due to irregularity and unordered data structure. To capture the 3D geometries, prior works mainly rely on exploring sophisticated local geometric extractors using convolution, graph, or attention mechanisms. These methods, however, incur unfavorable latency during inference, and the performance saturates over the past few years. In this paper, we present a novel perspective on this task. We notice that detailed local geometrical information probably is not the key to point cloud analysis -- we introduce a pure residual MLP network, called PointMLP, which integrates no sophisticated local geometrical extractors but still performs very competitively. Equipped with a proposed lightweight geometric affine module, PointMLP delivers the new state-of-the-art on multiple datasets. On the real-world ScanObjectNN dataset, our method even surpasses the prior best method by 3.3% accuracy. We emphasize that PointMLP achieves this strong performance without any sophisticated operations, hence leading to a superior inference speed. Compared to most recent CurveNet, PointMLP trains 2x faster, tests 7x faster, and is more accurate on ModelNet40 benchmark. We hope our PointMLP may help the community towards a better understanding of point cloud analysis. The code is available at https://github.com/ma-xu/pointMLP-pytorch.
translated by 谷歌翻译
点云的不规则性和混乱为点云分析带来了许多挑战。 PointMLP表明几何信息不是点云分析中唯一的关键点。它基于使用几何仿射模块的简单多层感知(MLP)结构实现了有希望的结果。但是,这些类似MLP的结构仅具有固定权重的聚合特征,而不同点特征的语义信息的差异被忽略。因此,我们提出了点特征的新的点矢量表示,以通过使用电感偏置来改善特征聚集。引入矢量表示的方向可以根据语义关系动态调节两个点特征的聚合。基于它,我们设计了一个新颖的Point2vector MLP体系结构。实验表明,与先前的最佳方法相比,它在ScanoBjectNN数据集的分类任务上实现了最新的性能,增加了1%。我们希望我们的方法可以帮助人们更好地了解语义信息在点云分析中的作用,并导致探索更多更好的特征表示或其他方式。
translated by 谷歌翻译
借助深度学习范式,许多点云网络已经发明了用于视觉分析。然而,由于点云数据的给定信息尚未完全利用,因此对这些网络的发展存在很大的潜力。为了提高现有网络在分析点云数据中的有效性,我们提出了一个即插即用模块,PNP-3D,旨在通过涉及更多来自显式3D空间的本地背景和全球双线性响应来改进基本点云特征表示隐含的功能空间。为了彻底评估我们的方法,我们对三个标准点云分析任务进行实验,包括分类,语义分割和对象检测,在那里我们从每个任务中选择三个最先进的网络进行评估。作为即插即用模块,PNP-3D可以显着提高已建立的网络的性能。除了在四个广泛使用的点云基准测试中实现最先进的结果,我们还提供了全面的消融研究和可视化,以展示我们的方法的优势。代码将在https://github.com/shiqiu0419/pnp-3d上获得。
translated by 谷歌翻译
变压器在各种计算机视觉地区发挥着越来越重要的作用,并且在点云分析中也取得了显着的成就。由于它们主要专注于点亮变压器,因此本文提出了一种自适应通道编码变压器。具体地,被设计为对频道的通道卷积旨在对信道进行编码。它可以通过捕获坐标和特征之间的潜在关系来编码特征通道。与简单地为每个通道分配注意重量相比,我们的方法旨在自适应地对信道进行编码。此外,我们的网络采用了邻域搜索方法的低级和高级双语义接收领域,以提高性能。广泛的实验表明,我们的方法优于三个基准数据集的最先进的点云分类和分段方法。
translated by 谷歌翻译
3D点云的卷积经过广泛研究,但在几何深度学习中却远非完美。卷积的传统智慧在3D点之间表现出特征对应关系,这是对差的独特特征学习的内在限制。在本文中,我们提出了自适应图卷积(AGCONV),以供点云分析的广泛应用。 AGCONV根据其动态学习的功能生成自适应核。与使用固定/各向同性核的解决方案相比,AGCONV提高了点云卷积的灵活性,有效,精确地捕获了不同语义部位的点之间的不同关系。与流行的注意力体重方案不同,AGCONV实现了卷积操作内部的适应性,而不是简单地将不同的权重分配给相邻点。广泛的评估清楚地表明,我们的方法优于各种基准数据集中的点云分类和分割的最新方法。同时,AGCONV可以灵活地采用更多的点云分析方法来提高其性能。为了验证其灵活性和有效性,我们探索了基于AGCONV的完成,DeNoing,Upsmpling,注册和圆圈提取的范式,它们与竞争对手相当甚至优越。我们的代码可在https://github.com/hrzhou2/adaptconv-master上找到。
translated by 谷歌翻译
人类自然有效地在复杂的场景中找到突出区域。通过这种观察的动机,引入了计算机视觉中的注意力机制,目的是模仿人类视觉系统的这一方面。这种注意机制可以基于输入图像的特征被视为动态权重调整过程。注意机制在许多视觉任务中取得了巨大的成功,包括图像分类,对象检测,语义分割,视频理解,图像生成,3D视觉,多模态任务和自我监督的学习。在本调查中,我们对计算机愿景中的各种关注机制进行了全面的审查,并根据渠道注意,空间关注,暂时关注和分支注意力进行分类。相关的存储库https://github.com/menghaoguo/awesome-vision-tions致力于收集相关的工作。我们还建议了未来的注意机制研究方向。
translated by 谷歌翻译
MLP-MIXER新出现为反对CNNS和变压器领域的新挑战者。尽管与变压器相比,尽管其相比,频道混合MLP和令牌混合MLP的概念可以在视觉识别任务中实现明显的性能。与图像不同,点云本身稀疏,无序和不规则,这限制了MLP-MILER用于点云理解的直接使用。在本文中,我们提出了一种通用点集运算符,其促进非结构化3D点之间的信息共享。通过简单地用SoftMax函数替换令牌混合的MLP,PointMixer可以在点集之间“混合”功能。通过这样做,可以在网络中广泛地使用PointMixer作为设定间混合,内部混合和金字塔混合。广泛的实验表明了对基于变压器的方法的语义分割,分类和点重建中的引光器竞争或卓越的性能。
translated by 谷歌翻译
与卷积神经网络相比,最近开发的纯变压器架构已经实现了对点云学习基准的有希望的准确性。然而,现有点云变压器是计算昂贵的,因为它们在构建不规则数据时浪费了大量时间。要解决此缺点,我们呈现稀疏窗口注意(SWA)模块,以收集非空体素的粗粒颗粒特征,不仅绕过昂贵的不规则数据结构和无效的空体素计算,还可以获得线性计算复杂性到体素分辨率。同时,要收集关于全球形状的细粒度特征,我们介绍了相对的注意(RA)模块,更强大的自我关注变体,用于对象的刚性变换。我们配备了SWA和RA,我们构建了我们的神经结构,称为PVT,将两个模块集成到Point云学习的联合框架中。与以前的变压器和关注的模型相比,我们的方法平均达到了分类基准和10x推理加速的最高精度为94.0%。广泛的实验还有效地验证了PVT在部分和语义分割基准上的有效性(分别为86.6%和69.2%Miou)。
translated by 谷歌翻译
机载激光扫描(ALS)点云的分类是遥感和摄影测量场的关键任务。尽管最近基于深度学习的方法取得了令人满意的表现,但他们忽略了接受场的统一性,这使得ALS点云分类对于区分具有复杂结构和极端规模变化的区域仍然具有挑战性。在本文中,为了配置多受感受性的场特征,我们提出了一个新型的接受场融合和分层网络(RFFS-NET)。以新颖的扩张图卷积(DGCONV)及其扩展环形扩张卷积(ADCONV)作为基本的构建块,使用扩张和环形图融合(Dagfusion)模块实现了接受场融合过程,该模块获得了多受感染的场特征代表通过捕获带有各种接收区域的扩张和环形图。随着计算碱基的计算基础,使用嵌套在RFFS-NET中的多级解码器进行的接收场的分层,并由多层接受场聚集损失(MRFALOSS)驱动,以驱动网络驱动网络以学习在具有不同分辨率的监督标签的方向。通过接受场融合和分层,RFFS-NET更适应大型ALS点云中具有复杂结构和极端尺度变化区域的分类。在ISPRS Vaihingen 3D数据集上进行了评估,我们的RFFS-NET显着优于MF1的基线方法5.3%,而MIOU的基线方法的总体准确性为82.1%,MF1的总准确度为71.6%,MIOU的MF1和MIOU为58.2%。此外,LASDU数据集和2019 IEEE-GRSS数据融合竞赛数据集的实验显示,RFFS-NET可以实现新的最新分类性能。
translated by 谷歌翻译
点云学习界见证了从CNN到变形金刚的模型转移,纯变压器架构在主要学习基准上实现了最高精度。然而,现有的点变压器是计算昂贵的,因为它们需要产生大的注意图,其相对于输入大小具有二次复杂度(空间和时间)。为了解决这种缺点,我们介绍补丁注意(PAT),以便自适应地学习计算注意力地图的更小的基础。通过对这些基础的加权求和,PAT仅捕获全局形状上下文,而且还可以实现输入大小的线性复杂性。此外,我们提出了一种轻量级的多尺度关注(MST)块来构建不同尺度特征的关注,提供具有多尺度特征的模型。我们配备了PAT和MST,我们构建了我们的神经结构,称为PatchFormer,将两个模块集成到Point云学习的联合框架中。广泛的实验表明,我们的网络对一般点云学习任务的可比准确性具有9.2倍的速度高于先前的点变压器。
translated by 谷歌翻译
变压器一直是自然语言处理(NLP)和计算机视觉(CV)革命的核心。 NLP和CV的显着成功启发了探索变压器在点云处理中的使用。但是,变压器如何应对点云的不规则性和无序性质?变压器对于不同的3D表示(例如,基于点或体素)的合适性如何?各种3D处理任务的变压器有多大的能力?截至目前,仍然没有对这些问题的研究进行系统的调查。我们第一次为3D点云分析提供了越来越受欢迎的变压器的全面概述。我们首先介绍变压器体系结构的理论,并在2D/3D字段中审查其应用程序。然后,我们提出三种不同的分类法(即实现 - 数据表示和基于任务),它们可以从多个角度对当前的基于变压器的方法进行分类。此外,我们介绍了研究3D中自我注意机制的变异和改进的结果。为了证明变压器在点云分析中的优势,我们提供了基于各种变压器的分类,分割和对象检测方法的全面比较。最后,我们建议三个潜在的研究方向,为3D变压器的开发提供福利参考。
translated by 谷歌翻译
变压器在自然语言处理中的成功最近引起了计算机视觉领域的关注。由于能够学习长期依赖性,变压器已被用作广泛使用的卷积运算符的替代品。事实证明,这种替代者在许多任务中都取得了成功,其中几种最先进的方法依靠变压器来更好地学习。在计算机视觉中,3D字段还见证了使用变压器来增加3D卷积神经网络和多层感知器网络的增加。尽管许多调查都集中在视力中的变压器上,但由于与2D视觉相比,由于数据表示和处理的差异,3D视觉需要特别注意。在这项工作中,我们介绍了针对不同3D视觉任务的100多种变压器方法的系统和彻底审查,包括分类,细分,检测,完成,姿势估计等。我们在3D Vision中讨论了变形金刚的设计,该设计使其可以使用各种3D表示形式处理数据。对于每个应用程序,我们强调了基于变压器的方法的关键属性和贡献。为了评估这些方法的竞争力,我们将它们的性能与12个3D基准测试的常见非转化方法进行了比较。我们通过讨论3D视觉中变压器的不同开放方向和挑战来结束调查。除了提出的论文外,我们的目标是频繁更新最新的相关论文及其相应的实现:https://github.com/lahoud/3d-vision-transformers。
translated by 谷歌翻译
我们介绍了PointConvormer,这是一个基于点云的深神经网络体系结构的新颖构建块。受到概括理论的启发,PointConvormer结合了点卷积的思想,其中滤波器权重仅基于相对位置,而变形金刚则利用了基于功能的注意力。在PointConvormer中,附近点之间的特征差异是重量重量卷积权重的指标。因此,我们从点卷积操作中保留了不变,而注意力被用来选择附近的相关点进行卷积。为了验证PointConvormer的有效性,我们在点云上进行了语义分割和场景流估计任务,其中包括扫描仪,Semantickitti,FlyingThings3D和Kitti。我们的结果表明,PointConvormer具有经典的卷积,常规变压器和Voxelized稀疏卷积方法的表现,具有较小,更高效的网络。可视化表明,PointConvormer的性能类似于在平面表面上的卷积,而邻域选择效果在物体边界上更强,表明它具有两全其美。
translated by 谷歌翻译
We study the problem of efficient semantic segmentation for large-scale 3D point clouds. By relying on expensive sampling techniques or computationally heavy pre/postprocessing steps, most existing approaches are only able to be trained and operate over small-scale point clouds. In this paper, we introduce RandLA-Net, an efficient and lightweight neural architecture to directly infer per-point semantics for large-scale point clouds. The key to our approach is to use random point sampling instead of more complex point selection approaches. Although remarkably computation and memory efficient, random sampling can discard key features by chance. To overcome this, we introduce a novel local feature aggregation module to progressively increase the receptive field for each 3D point, thereby effectively preserving geometric details. Extensive experiments show that our RandLA-Net can process 1 million points in a single pass with up to 200× faster than existing approaches. Moreover, our RandLA-Net clearly surpasses state-of-the-art approaches for semantic segmentation on two large-scale benchmarks Semantic3D and Se-manticKITTI.
translated by 谷歌翻译
最近神经网络的成功使得能够更好地解释3D点云,但是处理大规模的3D场景仍然是一个具有挑战性的问题。大多数电流方法将大型场景划分为小区,并将当地预测组合在一起。然而,该方案不可避免地涉及预处理和后处理的附加阶段,并且由于局部视角下的预测也可能降低最终输出。本文介绍了由新的轻质自我关注层组成的快速点变压器。我们的方法编码连续的3D坐标,基于体素散列的架构提高了计算效率。所提出的方法用3D语义分割和3D检测进行了说明。我们的方法的准确性对基于最佳的体素的方法具有竞争力,我们的网络达到了比最先进的点变压器更快的推理时间速度更快的136倍,具有合理的准确性权衡。
translated by 谷歌翻译