Despite the recent success of multi-task learning and pre-finetuning for natural language understanding, few works have studied the effects of task families on abstractive text summarization. Task families are a form of task grouping during the pre-finetuning stage to learn common skills, such as reading comprehension. To close this gap, we analyze the influence of multi-task learning strategies using task families for the English abstractive text summarization task. We group tasks into one of three strategies, i.e., sequential, simultaneous, and continual multi-task learning, and evaluate trained models through two downstream tasks. We find that certain combinations of task families (e.g., advanced reading comprehension and natural language inference) positively impact downstream performance. Further, we find that choice and combinations of task families influence downstream performance more than the training scheme, supporting the use of task families for abstractive text summarization.
translated by 谷歌翻译
尽管最近的多任务学习和自然语言处理的转移学习成功(NLP),但很少有效地研究了在训练中缩放任务数量的效果。迈出了这一目标,介绍了Exmix(极端混合物):跨越各个领域和任务家庭的大规模收集107个监督的NLP任务。使用EXMIX,我们研究了最大规模的多任务预培训的影响,并分析了普通任务家庭之间的共同培训转移。通过此分析,我们表明手动策划用于多任务预训练的理想任务,并不简单,而且多任务缩放可以自行改进模型。最后,我们提出了Ext5:使用自我监督跨度去噪和监督EXMIX的多任务目标预先训练的模型。通过广泛的实验,我们表明Ext5优于超级格,宝石,彩虹,封闭书QA任务的强大T5基线,以及Exmix之外的几个任务。 Ext5在预训练时也显着提高了样品效率。
translated by 谷歌翻译
预训练的语言模型(PLM)在自然语言生成(NLG)任务中取得了显着的成功。到目前为止,大多数PLM都使用大型一般语料库以无监督的方式进行了预培训。同时,与无监督的模型相比,预先训练的模型越来越多地显示出较低的数据表现出色。受监督预训练的成功的激励,我们提出了自然语言生成的多任务监督预训练(MVP)。为了预先培训文本生成模型MVP,我们从七个生成任务中收集了45个数据集的标记预训练语料库。对于每个任务,我们进一步预先训练特定的软提示,以刺激执行特定任务的模型能力。广泛的实验证明了我们在许多NLG任务中有监督的预训练的有效性,并且我们的一般方法在17个数据集中的12个中实现了最先进的性能。
translated by 谷歌翻译
In long document controllable summarization, where labeled data is scarce, pretrained models struggle to adapt to the task and effectively respond to user queries. In this paper, we introduce Socratic pretraining, a question-driven, unsupervised pretraining objective specifically designed to improve controllability in summarization tasks. By training a model to generate and answer relevant questions in a given context, Socratic pretraining enables the model to more effectively adhere to user-provided queries and identify relevant content to be summarized. We demonstrate the effectiveness of this approach through extensive experimentation on two summarization domains, short stories and dialogue, and multiple control strategies: keywords, questions, and factoid QA pairs. Our pretraining method relies only on unlabeled documents and a question generation system and outperforms pre-finetuning approaches that use additional supervised data. Furthermore, our results show that Socratic pretraining cuts task-specific labeled data requirements in half, is more faithful to user-provided queries, and achieves state-of-the-art performance on QMSum and SQuALITY.
translated by 谷歌翻译
查询聚焦的文本摘要(QFTS)任务旨在构建基于给定查询的文本文档摘要的构建系统。解决此任务的关键挑战是缺乏培训摘要模型的大量标记数据。在本文中,我们通过探索一系列域适应技术来解决这一挑战。鉴于最近在广泛的自然语言处理任务中进行预先接受的变压器模型的成功,我们利用此类模型为单文档和多文件方案的QFTS任务产生抽象摘要。对于域适应,我们使用预先训练的变压器的摘要模型应用了各种技术,包括转移学习,弱监督学习和远程监督。六个数据集的广泛实验表明,我们所提出的方法非常有效地为QFTS任务产生抽象摘要,同时在一组自动和人类评估指标上设置新的最先进的结果。
translated by 谷歌翻译
Transfer learning, where a model is first pre-trained on a data-rich task before being finetuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts all text-based language problems into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled data sets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new "Colossal Clean Crawled Corpus", we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our data set, pre-trained models, and code.
translated by 谷歌翻译
诸如学术文章和商业报告之类的长期文件一直是详细说明重要问题和需要额外关注的复杂主题的标准格式。自动汇总系统可以有效地将长文档置于简短而简洁的文本中,以封装最重要的信息,从而在帮助读者的理解中很重要。最近,随着神经体系结构的出现,已经做出了重大的研究工作,以推动自动文本摘要系统,以及有关将这些系统扩展到长期文档领域的挑战的大量研究。在这项调查中,我们提供了有关长期文档摘要的研究的全面概述,以及其研究环境的三个主要组成部分的系统评估:基准数据集,汇总模型和评估指标。对于每个组成部分,我们在长期汇总的背景下组织文献,并进行经验分析,以扩大有关当前研究进度的观点。实证分析包括一项研究基准数据集的内在特征,摘要模型的多维分析以及摘要评估指标的综述。根据总体发现,我们通过提出可能在这个快速增长的领域中提出未来探索的方向来得出结论。
translated by 谷歌翻译
我们提出了一项实证研究,以适应现有的经过验证的文本对文本模型,以备长期输入。通过沿预训练管道的三个轴的全面研究 - 模型架构,优化目标和训练式语料库,我们提出了一种有效的食谱,以从现有的短篇小说模型中构建长篇小说模型。具体而言,我们用汇总仪的块关注替换了变压器中的全部注意力,并使用蒙版的跨度预测任务为模型预算,长度不同。就训练训练的语料库而言,我们发现,与使用通常在其域覆盖范围中通常受到限制的现有长文档语料库相比,使用大型开放域语料库的随机串联的短篇小说可以提高性能。通过这些发现,我们建立了一个长篇文本模型,该模型可以在长篇文本质量检查任务上实现竞争性能,并在五个长文本摘要数据集上建立新的最新技术,通常优于先前的方法,具有较大的模型大小。
translated by 谷歌翻译
最近的工作表明,(1)增加输入长度或(2)增加模型大小可以提高基于变压器的神经模型的性能。在本文中,我们提出了一个名为Longt5的新模型,我们探讨了同时缩放输入长度和模型大小的效果。具体而言,我们综合了从长输入变压器(ETC)的关注思路,并采用了从摘要预训练(PEGASU)的预训练策略进入可扩展的T5架构。结果是我们称之为{\ EM瞬态全球}(TGLOBAL)的新关注机制,这些机制是模仿等本地/全球注意力机制,但不需要额外的侧面输入。我们能够实现最先进的结果,以若干摘要任务,优于问题应答任务的原始T5模型。
translated by 谷歌翻译
通过自我监督的学习预先训练的大型语言模型在各种各样的任务上表现出令人印象深刻的零击功能。在这项工作中,我们介绍了Welm:一种针对中文的精心读取的预训练的语言模型,能够无缝执行不同类型的任务,以零或几次演示。 Welm通过“阅读”涵盖广泛主题的精选高质量语料库来接受10b参数的培训。我们表明,韦尔姆拥有有关各种领域和语言的广泛知识。在18个单语(中文)任务中,WELM可以大大优于现有的预训练模型,尺寸相似,并匹配高达25倍大的模型的性能。韦尔姆还表现出强大的多种语言和代码转换理解的能力,优于预先对30种语言进行预培训的现有多语言模型。此外,我们收集了人工编写的提示,并通过多次培训进行了大量的中文和微调韦尔姆的监督数据集。最终的模型可以实现对看不见的任务类型的强烈概括,并在零射门学习中优于无监督的韦尔姆。最后,我们证明韦尔姆具有解释和校准自己的决策的基本技能,这可能是未来研究的有希望的方向。我们的模型可以从https://welm.weixin.qq.com/docs/api/应用。
translated by 谷歌翻译
对比学习模型在无监督的视觉表示学习中取得了巨大成功,这使得相同图像的不同视图的特征表示之间的相似性最大化,同时最小化不同图像的视图的特征表示之间的相似性。在文本摘要中,输出摘要是输入文档的较短形式,它们具有类似的含义。在本文中,我们提出了对监督抽象文本摘要的对比学习模型,在那里我们查看文档,它的金摘要及其模型生成的摘要,与相同的平均表示的不同视图,并在培训期间最大化它们之间的相似性。我们在三个不同的摘要数据集上改进了一个强序列到序列文本生成模型(即,BART)。人类评估还表明,与其对应物相比,我们的模型达到了更好的忠实性评级,没有对比的目标。
translated by 谷歌翻译
文本生成的广泛使用的评估指标要么与更长的文本效果不错,要么无法评估文本质量的所有方面。在本文中,我们引入了一个名为SMART的新指标,以减轻此类限制。具体而言,我们将句子视为匹配的基本单位,而不是代币,并使用句子匹配函数来匹配匹配候选和参考句子。还将候选句子与源文件中的句子进行了比较,以允许接地(例如,事实)评估。我们的结果表明,我们提出的指标与基于模型的匹配函数的系统级相关性优于萨姆瓦尔摘要元评估数据集上的所有竞争指标指标。后者不使用任何神经模型,这在模型开发阶段很有用,在这些阶段,资源可以受到限制且需要快速评估。最后,我们还进行了广泛的分析,表明我们提出的指标与较长的摘要很好地运行,并且对特定模型的偏见较小。
translated by 谷歌翻译
由于免费的在线百科全书具有大量内容,因此Wikipedia和Wikidata是许多自然语言处理(NLP)任务的关键,例如信息检索,知识基础构建,机器翻译,文本分类和文本摘要。在本文中,我们介绍了Wikides,这是一个新颖的数据集,用于为文本摘要问题提供Wikipedia文章的简短描述。该数据集由6987个主题上的80K英语样本组成。我们设置了一种两阶段的摘要方法 - 描述生成(I阶段)和候选排名(II阶段)作为一种依赖于转移和对比学习的强大方法。对于描述生成,与其他小规模的预训练模型相比,T5和BART表现出了优越性。通过将对比度学习与Beam Search的不同输入一起应用,基于度量的排名模型优于直接描述生成模型,在主题独立拆分和独立于主题的独立拆分中,最高可达22个胭脂。此外,第II期中的结果描述得到了人类评估的支持,其中45.33%以上,而I阶段的23.66%则支持针对黄金描述。在情感分析方面,生成的描述无法有效地从段落中捕获所有情感极性,同时从黄金描述中更好地完成此任务。自动产生的新描述减少了人类为创建它们的努力,并丰富了基于Wikidata的知识图。我们的论文对Wikipedia和Wikidata产生了实际影响,因为有成千上万的描述。最后,我们预计Wikides将成为从短段落中捕获显着信息的相关作品的有用数据集。策划的数据集可公开可用:https://github.com/declare-lab/wikides。
translated by 谷歌翻译
Information extraction from scholarly articles is a challenging task due to the sizable document length and implicit information hidden in text, figures, and citations. Scholarly information extraction has various applications in exploration, archival, and curation services for digital libraries and knowledge management systems. We present MORTY, an information extraction technique that creates structured summaries of text from scholarly articles. Our approach condenses the article's full-text to property-value pairs as a segmented text snippet called structured summary. We also present a sizable scholarly dataset combining structured summaries retrieved from a scholarly knowledge graph and corresponding publicly available scientific articles, which we openly publish as a resource for the research community. Our results show that structured summarization is a suitable approach for targeted information extraction that complements other commonly used methods such as question answering and named entity recognition.
translated by 谷歌翻译
Precisely assessing the progress in natural language generation (NLG) tasks is challenging, and human evaluation to establish a preference in a model's output over another is often necessary. However, human evaluation is usually costly, difficult to reproduce, and non-reusable. In this paper, we propose a new and simple automatic evaluation method for NLG called Near-Negative Distinction (NND) that repurposes prior human annotations into NND tests. In an NND test, an NLG model must place a higher likelihood on a high-quality output candidate than on a near-negative candidate with a known error. Model performance is established by the number of NND tests a model passes, as well as the distribution over task-specific errors the model fails on. Through experiments on three NLG tasks (question generation, question answering, and summarization), we show that NND achieves a higher correlation with human judgments than standard NLG evaluation metrics. We then illustrate NND evaluation in four practical scenarios, for example performing fine-grain model analysis, or studying model training dynamics. Our findings suggest that NND can give a second life to human annotations and provide low-cost NLG evaluation.
translated by 谷歌翻译
自动摘要评估对于机器生成和人为生产的摘要都有用。自动评估给定文档的摘要文本启用,例如,摘要生成系统开发和检测不适当的摘要。摘要评估可以以多种模式进行:排名摘要生成系统;对特定文档的排名摘要;并在绝对规模上估算文档 - 苏格尔对的质量。带有注释的现有数据集用于摘要评估,通常基于新闻摘要数据集,例如CNN/DailyMail或XSUM。在这项工作中,我们描述了一个新的数据集,即播客摘要评估语料库,这是由TREC2020的人类专家评估的播客摘要集。与现有的摘要评估数据相比,该数据集具有两个独特的方面:(i)基于语音播客的长输入,文档; (ii)有机会在播客语料库中检测不适当的参考摘要。首先,我们检查了现有的评估方法,包括无模型和基于模型的方法,并为此长输入摘要评估数据集提供基准结果。其次,为了过滤参考参考文献配对以进行培训,我们采用摘要评估进行数据选择。这两个方面的实验结果为摘要评估和发电任务提供了有趣的见解。播客摘要评估数据可用。
translated by 谷歌翻译
传达相关和忠实信息的能力对于有条件生成的许多任务至关重要,但对于神经SEQ-seq seq模型仍然难以捉摸,这些模型的输出通常显示出幻觉,并且无法正确涵盖重要细节。在这项工作中,我们主张规划作为有用的中间表示,以使有条件的一代减少不透明和扎根。我们的作品提出了将文本计划作为一系列提问(QA)对的新概念化。我们用QA蓝图作为内容选择(即〜说什么)和计划(即〜按什么顺序)来增强现有数据集(例如,用于摘要)。我们通过利用最先进的问题生成技术并将输入输出对自动获取蓝图,并将其转换为输入 - 蓝图输出输出元组。我们开发了基于变压器的模型,每个模型都在它们如何将蓝图合并到生成的输出中(例如,作为全局计划或迭代)。跨指标和数据集的评估表明,蓝图模型比不采取计划并允许对生成输出进行更严格控制的替代方案更为事实。
translated by 谷歌翻译
大型和超大语言模型的开发,例如GPT-3,T5,Switch Transformer,Ernie等,已经显着改善了文本生成的性能。该领域的重要研究方向之一是产生具有争论的文本。该问题的解决方案可以用于商务会议,政治辩论,对话系统,以准备学生论文。这些应用的主要领域之一是经济领域。俄罗斯语言的论证文本生成的关键问题是缺乏注释的论证语料库。在本文中,我们将论证的微观版,说服力论文和UKP句子语料库的翻译版本用于微调Rubert模型。此外,该模型用于通过论证注释经济新闻的语料库。然后使用带注释的语料库微调Rugpt-3模型,该模型生成参数文本。结果表明,与原始RUGPT-3模型相比,这种方法将论点生成的准确性提高了20个百分点(63.2%对42.5%)。
translated by 谷歌翻译
用于提取和抽象性摘要系统的传统培训范例始终仅使用令牌级别或句子级培训目标。但是,始终从摘要级别评估输出摘要,从而导致培训和评估的不一致。在本文中,我们提出了一个基于对比度学习的重新排列框架,用于一阶段的摘要,称为COLO。通过建模对比目标,我们表明摘要模型能够根据摘要级别的分数直接生成摘要,而无需其他模块和参数。广泛的实验表明,CORO在CNN/DailyMail基准测试中提高了单阶段系统的提取和抽象结果,将其提高到44.58和46.33 Rouge-1得分,同时保留了参数效率和推断效率。与最先进的多阶段系统相比,我们节省了100多个GPU训练时间,并在推理期间获得3〜8加速比,同时保持可比的结果。
translated by 谷歌翻译
长表质疑应答(LFQA)任务要求将相关的文件检索到查询,使用它们形成段落长度答案。尽管LFQA建模相当大,但基本问题妨碍了其进度:i)火车/验证/测试数据集重叠,ii)缺少自动度量标准和III)在检索的文档中产生的答案不会“接地”。这项工作解决了这些关键瓶颈的每一个,有助于自然语言推理/生成(NLI / NLG)方法和指标,使其减轻重大进展。
translated by 谷歌翻译