大多数避免障碍算法仅在特定环境中有效,并且对某些新环境的适应性较低。在本文中,我们提出了一种轨迹学习(TL)的避免算法,该算法可以从一般障碍避免算法产生的轨迹中学习隐式避免机制,并实现更好的适应性。具体而言,我们定义了一个通用数据结构来描述避免障碍机制。基于这种结构,我们将学习障碍算法的学习转换为有关方向选择的多类分类问题。然后,我们设计一个人工神经网络(ANN),以通过监督学习来拟合多类分类功能,并最终获得产生观察到的轨迹的障碍物避免机制。我们的算法可以获得类似于轨迹中所示的障碍机制,并且适合看不见的环境。自动学习机制简化了应用程序中障碍算法的修改和调试。仿真结果表明,所提出的算法可以从轨迹学习避免障碍策略并获得更好的适应性。
translated by 谷歌翻译
In this work, we propose a new approach that combines data from multiple sensors for reliable obstacle avoidance. The sensors include two depth cameras and a LiDAR arranged so that they can capture the whole 3D area in front of the robot and a 2D slide around it. To fuse the data from these sensors, we first use an external camera as a reference to combine data from two depth cameras. A projection technique is then introduced to convert the 3D point cloud data of the cameras to its 2D correspondence. An obstacle avoidance algorithm is then developed based on the dynamic window approach. A number of experiments have been conducted to evaluate our proposed approach. The results show that the robot can effectively avoid static and dynamic obstacles of different shapes and sizes in different environments.
translated by 谷歌翻译
本文着重于影响弹性的移动机器人的碰撞运动计划和控制的新兴范式转移,并开发了一个统一的层次结构框架,用于在未知和部分观察的杂物空间中导航。在较低级别上,我们开发了一种变形恢复控制和轨迹重新启动策略,该策略处理可能在本地运行时发生的碰撞。低级系统会积极检测碰撞(通过内部内置的移动机器人上的嵌入式霍尔效应传感器),使机器人能够从其内部恢复,并在本地调整后影响后的轨迹。然后,在高层,我们提出了一种基于搜索的计划算法,以确定如何最好地利用潜在的碰撞来改善某些指标,例如控制能量和计算时间。我们的方法建立在A*带有跳跃点的基础上。我们生成了一种新颖的启发式功能,并进行了碰撞检查和调整技术,从而使A*算法通过利用和利用可能的碰撞来更快地收敛到达目标。通过将全局A*算法和局部变形恢复和重新融合策略以及该框架的各个组件相结合而生成的整体分层框架在模拟和实验中都经过了广泛的测试。一项消融研究借鉴了与基于搜索的最先进的避免碰撞计划者(用于整体框架)的链接,以及基于搜索的避免碰撞和基于采样的碰撞 - 碰撞 - 全球规划师(对于更高的较高的碰撞 - 等级)。结果证明了我们的方法在未知环境中具有碰撞的运动计划和控制的功效,在2D中运行的一类撞击弹性机器人具有孤立的障碍物。
translated by 谷歌翻译
本文提出了一种有效且安全的方法,可以避免基于LiDAR的静态和动态障碍。首先,点云用于生成实时的本地网格映射以进行障碍物检测。然后,障碍物由DBSCAN算法聚集,并用最小边界椭圆(MBE)包围。此外,进行数据关联是为了使每个MBE与当前帧中的障碍匹配。考虑到MBE作为观察,Kalman滤波器(KF)用于估计和预测障碍物的运动状态。通过这种方式,可以将远期时间域中每个障碍物的轨迹作为一组椭圆化。由于MBE的不确定性,参数化椭圆形的半肢和半尺寸轴被扩展以确保安全性。我们扩展了传统的控制屏障功能(CBF),并提出动态控制屏障功能(D-CBF)。我们将D-CBF与模型预测控制(MPC)结合起来,以实施安全至关重要的动态障碍。进行了模拟和实际场景中的实验,以验证我们算法的有效性。源代码发布以供社区参考。
translated by 谷歌翻译
为多个机器人制定安全,稳定和高效的避免障碍政策是具有挑战性的。大多数现有研究要么使用集中控制,要么需要与其他机器人进行通信。在本文中,我们提出了一种基于对数地图的新型对数深度强化学习方法,以避免复杂且无通信的多机器人方案。特别是,我们的方法将激光信息转换为对数图。为了提高训练速度和概括性能,我们的政策将在两个专门设计的多机器人方案中进行培训。与其他方法相比,对数图可以更准确地表示障碍,并提高避免障碍的成功率。我们最终在各种模拟和现实情况下评估了我们的方法。结果表明,我们的方法为复杂的多机器人场景和行人场景中的机器人提供了一种更稳定,更有效的导航解决方案。视频可在https://youtu.be/r0esuxe6mze上找到。
translated by 谷歌翻译
尽管数十年的努力,但在真正的情景中的机器人导航具有波动性,不确定性,复杂性和歧义(vuca短暂),仍然是一个具有挑战性的话题。受到中枢神经系统(CNS)的启发,我们提出了一个在Vuca环境中的自主导航的分层多专家学习框架。通过考虑目标位置,路径成本和安全水平的启发式探索机制,上层执行同时映射探索和路线规划,以避免陷入盲巷,类似于CNS中的大脑。使用本地自适应模型融合多种差异策略,下层追求碰撞 - 避免和直接策略之间的平衡,作为CNS中的小脑。我们在多个平台上进行仿真和实际实验,包括腿部和轮式机器人。实验结果表明我们的算法在任务成就,时间效率和安全性方面优于现有方法。
translated by 谷歌翻译
在本文中,我们基于非线性模型预测控制(NMPC)方法提出了一种分散的控制方法,该方法采用屏障证书在具有静态和/或动态障碍的未知环境中安全导航的多个非独立轮式移动机器人。该方法将学习的屏障功能(LBF)纳入NMPC设计中,以确保安全机器人导航,即防止机器人与其他机器人和障碍物的碰撞。我们将我们提出的控制方法称为NMPC-LBF。由于每个机器人都没有关于障碍物和其他机器人的先验知识,因此我们使用每个机器人实时运行的深神经网络(DEEPNN),仅从机器人的刺激镜头和探针测量中学习屏障功能(BF)。深文经过训练,可以学习分离安全和不安全地区的BF。在不同情况下,我们对模拟和实际Turtlebot3汉堡机器人实施了建议的方法。实施结果显示了NMPC-LBF方法在确保机器人安全导航方面的有效性。
translated by 谷歌翻译
近年来,移动机器人的安全问题引起了人们的关注。在本文中,我们提出了一种智能的物理攻击,通过从外部观察中学习障碍 - 避免机制,将移动机器人置于预设位置。我们作品的显着新颖性在于揭示具有智能和高级设计的基于物理攻击的可能性,可以带来真正的威胁,而没有对系统动态或对内部系统的访问的先验知识。传统网络空间安全中的对策无法处理这种攻击。练习,拟议的攻击的基石是积极探索受害者机器人与环境的复杂相互作用的特征,并学习对其行为的有限观察中表现出的障碍知识。然后,我们提出了最短的路径和手持攻击算法,以从巨大的运动空间中找到有效的攻击路径,从而在路径长度和活动期间分别以低成本实现了驾驶到陷阱目标。证明了算法的收敛性,并进一步得出了攻击性能范围。广泛的模拟和现实生活实验说明了拟议攻击的有效性,招呼未来对机器人系统的物理威胁和防御的研究。
translated by 谷歌翻译
本文介绍了一种多模式运动计划(MMP)算法,该算法结合了三维(3-D)路径计划和DWA障碍避免算法。该算法旨在计划复杂的非结构化场景中超越障碍物的机器人的路径和运动。提出了一种新颖的A-Star算法来结合非结构化场景的特征,并将其切换为贪婪的最佳优先策略算法的策略。同时,路径计划的算法与DWA算法集成在一起,因此机器人可以在沿着全球计划的路径运动过程中执行局部动态障碍。此外,当提议的全球路径计划算法与局部障碍算法结合使用时,机器人可以在避免障碍物和克服障碍物后纠正道路。具有几个复杂环境的工厂中的仿真实验验证了算法的可行性和鲁棒性。该算法可以迅速为超越障碍物的机器人生成合理的3D路径,并在考虑场景和运动障碍物的特征的前提下进行可靠的当地障碍。
translated by 谷歌翻译
在过去的几十年中,对生物启发的智能及其对机器人技术的应用非常关注。本文对生物启发的智能进行了全面的调查,重点是神经动力学方法,尤其是对自主机器人系统的路径计划和控制。首先,引入了以生物启发的分流模型及其变体(添加剂模型和门控偶极模型),并详细介绍其主要特征。然后,回顾了实时路径计划和各种机器人系统控制的两个主要神经动力学应用。一个以神经动力学模型为特征的生物启发的神经网络框架,用于移动机器人,清洁机器人和水下机器人。生物启发的神经网络已在无碰撞导航和合作中广泛使用,没有任何学习程序,全球成本功能以及动态环境的先验知识。此外,还进一步讨论了针对各种机器人系统的生物启发的后台控制器,这些控制器能够在发生较大的初始跟踪误差时消除速度跳跃。最后,本文讨论了当前的挑战和未来的研究方向。
translated by 谷歌翻译
这项研究提出了一种分布式算法,该算法通过自动决策,平滑的羊群和分布良好的捕获来使代理的自适应分组捕获多个目标。代理商根据环境信息做出自己的决定。提出了一种改进的人工潜在方法,以使代理能够平稳自然地改变形成以适应环境。拟议的策略确保了群体的协调发展在群体上陷入多个目标的现象。我们使用仿真实验和设计指标来验证提出方法的性能,以分析这些模拟和物理实验。
translated by 谷歌翻译
为了解决复杂环境中的自主导航问题,本文新呈现了一种有效的运动规划方法。考虑到大规模,部分未知的复杂环境的挑战,精心设计了三层运动规划框架,包括全局路径规划,本地路径优化和时间最佳速度规划。与现有方法相比,这项工作的新颖性是双重的:1)提出了一种新的动作原语的启发式引导剪枝策略,并完全集成到基于国家格子的全球路径规划器中,以进一步提高图表搜索的计算效率,以及2)提出了一种新的软限制局部路径优化方法,其中充分利用底层优化问题的稀疏带系统结构以有效解决问题。我们在各种复杂的模拟场景中验证了我们方法的安全,平滑,灵活性和效率,并挑战真实世界的任务。结果表明,与最近的近期B型zier曲线的状态空间采样方法相比,全球规划阶段,计算效率提高了66.21%,而机器人的运动效率提高了22.87%。我们命名拟议的运动计划框架E $ \ mathrm {^ 3} $拖把,其中3号不仅意味着我们的方法是三层框架,而且还意味着所提出的方法是三个阶段有效。
translated by 谷歌翻译
室内运动计划的重点是解决通过混乱环境导航代理的问题。迄今为止,在该领域已经完成了很多工作,但是这些方法通常无法找到计算廉价的在线路径计划和路径最佳之间的最佳平衡。除此之外,这些作品通常证明是单一启动单目标世界的最佳性。为了应对这些挑战,我们为在未知室内环境中进行导航的多个路径路径计划者和控制器堆栈,在该环境中,路点将目标与机器人必须在达到目标之前必须穿越的中介点一起。我们的方法利用全球规划师(在任何瞬间找到下一个最佳航路点),本地规划师(计划通往特定航路点的路径)以及自适应模型预测性控制策略(用于强大的系统控制和更快的操作) 。我们在一组随机生成的障碍图,中间航路点和起始目标对上评估了算法,结果表明计算成本显着降低,具有高度准确性和可靠的控制。
translated by 谷歌翻译
本文考虑了非独立多机器人系统的同时位置和方向计划。与仅关注最终位置限制的常见研究不同,我们将非语言移动机器人建模为刚性机构,并引入机器人最终状态的方向和位置约束。换句话说,机器人不仅应达到指定的位置,而且还应同时指出所需的方向。这个问题的挑战在于全州运动计划的不足,因为只需要通过两个控制输入来计划三个州。为此,我们根据刚体建模提出了动态矢量场(DVF)。具体而言,机器人方向的动力学被带入矢量场,这意味着向量场不再是2-D平面上的静态,而是一个动态的,而动态场却随态度角度而变化。因此,每个机器人可以沿DVF的积分曲线移动以达到所需位置,与此同时,姿态角可以在方向动力学之后收敛到指定值。随后,通过在DVF的框架下设计一个圆形向量场,我们进一步研究了运动计划中的避免障碍物和相互企业的避免。最后,提供了数值仿真示例,以验证提出的方法的有效性。
translated by 谷歌翻译
通常,可以将最佳运动计划作为本地和全球执行。在这样的计划中,支持本地或全球计划技术的选择主要取决于环境条件是动态的还是静态的。因此,最适当的选择是与全球计划一起使用本地计划或本地计划。当设计最佳运动计划是本地或全球的时,要记住的关键指标是执行时间,渐近最优性,对动态障碍的快速反应。与其他方法相比,这种计划方法可以更有效地解决上述目标指标,例如路径计划,然后进行平滑。因此,这项研究的最重要目标是分析相关文献,以了解运动计划,特别轨迹计划,问题,当应用于实时生成最佳轨迹的多局部航空车(MAV),影响力(MAV)时如何提出问题。列出的指标。作为研究的结果,轨迹计划问题被分解为一组子问题,详细列出了解决每个问题的方法列表。随后,总结了2010年至2022年最突出的结果,并以时间表的形式呈现。
translated by 谷歌翻译
The field of autonomous mobile robots has undergone dramatic advancements over the past decades. Despite achieving important milestones, several challenges are yet to be addressed. Aggregating the achievements of the robotic community as survey papers is vital to keep the track of current state-of-the-art and the challenges that must be tackled in the future. This paper tries to provide a comprehensive review of autonomous mobile robots covering topics such as sensor types, mobile robot platforms, simulation tools, path planning and following, sensor fusion methods, obstacle avoidance, and SLAM. The urge to present a survey paper is twofold. First, autonomous navigation field evolves fast so writing survey papers regularly is crucial to keep the research community well-aware of the current status of this field. Second, deep learning methods have revolutionized many fields including autonomous navigation. Therefore, it is necessary to give an appropriate treatment of the role of deep learning in autonomous navigation as well which is covered in this paper. Future works and research gaps will also be discussed.
translated by 谷歌翻译
Designing a local planner to control tractor-trailer vehicles in forward and backward maneuvering is a challenging control problem in the research community of autonomous driving systems. Considering a critical situation in the stability of tractor-trailer systems, a practical and novel approach is presented to design a non-linear MPC(NMPC) local planner for tractor-trailer autonomous vehicles in both forward and backward maneuvering. The tractor velocity and steering angle are considered to be control variables. The proposed NMPC local planner is designed to handle jackknife situations, avoiding multiple static obstacles, and path following in both forward and backward maneuvering. The challenges mentioned above are converted into a constrained problem that can be handled simultaneously by the proposed NMPC local planner. The direct multiple shooting approach is used to convert the optimal control problem(OCP) into a non-linear programming problem(NLP) that IPOPT solvers can solve in CasADi. The controller performance is evaluated through different backup and forward maneuvering scenarios in the Gazebo simulation environment in real-time. It achieves asymptotic stability in avoiding static obstacles and accurate tracking performance while respecting path constraints. Finally, the proposed NMPC local planner is integrated with an open-source autonomous driving software stack called AutowareAi.
translated by 谷歌翻译
多机器人运输(MRT)是通过多个机器人的合作将对象运送到目的地。在物体运输过程中,避免障碍是一个不可或缺的特征。在传统的当地规划师中,障碍通常被认为是不可克服的,所以机器人团队绕过整个障碍。然而,许多障碍可以在真实情况下越过。研究机器人团队的障碍交叉能力可以提高MRT的效率,并提高复杂环境中的规划成功率。通过患者转移通过床单的灵感,本文侧重于多移动机器人的物体运输,具有可变形的纸张。提出了一种具有障碍交叉能力的新的本地计划者,其中包括三个部分:可变形的纸张建模,形成优化和局部路径。它可以成功找到在其他规划者失败的复杂情景中的障碍交叉路径。策划者的有效性和多功能性通过实验中的三个移动机器人进行了案例研究,以及具有四个机器人的模拟。
translated by 谷歌翻译
近年来,无人驾驶汽车(UAV)用于众多检查和视频捕获任务。但是,在障碍附近手动控制无人机是具有挑战性的,并且构成了高风险。即使对于自动飞行,全球导航计划也可能太慢,无法应对新感知的障碍。诸如风之类的干扰可能会导致与计划中的轨迹偏离。在这项工作中,我们提出了一种快速的预测障碍方法,该方法不取决于更高级别的本地化或映射,并保持无人机的动态飞行功能。它直接在LIDAR范围内实时运行,并通过计算范围图像内的角电位字段来调整当前飞行方向。随后根据轨迹预测和接触时间估计来确定速度幅度。使用硬件式模拟评估我们的方法。它可以使无人机保持安全距离,同时允许比以前直接在传感器数据上运行的反应性障碍物方法更高的飞行速度。
translated by 谷歌翻译
在移动机器人学中,区域勘探和覆盖率是关键能力。在大多数可用研究中,共同的假设是全球性,远程通信和集中合作。本文提出了一种新的基于群的覆盖控制算法,可以放松这些假设。该算法组合了两个元素:Swarm规则和前沿搜索算法。受到大量简单代理(例如,教育鱼,植绒鸟类,蜂拥昆虫)的自然系统的启发,第一元素使用三个简单的规则来以分布式方式维持群体形成。第二元素提供了选择有希望区域以使用涉及代理的相对位置的成本函数的最小化来探索(和覆盖)的装置。我们在不同环境中测试了我们的方法对异质和同质移动机器人的性能。我们衡量覆盖性能和允许本集团维持沟通的覆盖性能和群体形成统计数据。通过一系列比较实验,我们展示了拟议的策略在最近提出的地图覆盖方法和传统的人工潜在领域基于细胞覆盖,转变和安全路径的百分比,同时保持允许短程的形成沟通。
translated by 谷歌翻译