持续学习一系列任务是深度神经网络中的一个活跃领域。调查的主要挑战是灾难性遗忘或干扰以前任务的知识的现象。最近的工作调查了远期知识转移到新任务。向后转移以改善以前的任务中获得的知识的关注要少得多。通常,人们对知识转移如何有助于不断学习的任务有限。我们提出了一种在持续监督学习中进行知识转移的理论,该理论都考虑了前进和向后转移。我们旨在了解它们对越来越多知识的学习者的影响。我们得出这些转移机制中的每一种。这些界限对特定实现(例如深神经网络)是不可知的。我们证明,对于观察相关任务的持续学习者而言,前进和向后转移都可以随着观察到更多的任务而提高性能。
translated by 谷歌翻译
什么是学习? 20美元^ {st} Centure的学习理论形式化 - 这是人工智能中沉淀的革命 - 主要是在$ \ mathit {in-diversion} $学习,即在假设训练数据被取样的假设下学习与评估分布相同的分配。这种假设使这些理论不足以表征21美元^ $ {st} MENTURE的现实世界数据问题,其通常是通过与培训数据分布(称为公共学习)不同的评估分布来表征。因此,我们通过放松这种假设来对现有可读性的正式定义进行小小的变化。然后,我们介绍$ \ MATHBF {学习\效率} $(LE)来量化学习者能够利用给定问题的数据的金额,无论它是一个或分发的问题如何。然后,我们定义并证明了可读性的广义概念之间的关系,并展示了该框架是如何足够一般的,以表征传输,多任务,元,持续和终身学习。我们希望本统一有助于弥合现实世界问题的实证实践与理论指导之间的差距。最后,因为生物学学习继续胜过机器学习算法的某些挑战,我们讨论了这一框架VI的局限性 - \'A-is-is-is-is-is-is-is-vis,它的形式化生物学学习能力,旨在为未来研究的多个途径。
translated by 谷歌翻译
本文认为,连续学习方法可以通过分割多种模型的学习者的容量来利益。我们使用统计学习理论和实验分析来展示多种任务在单个型号培训时以非琐碎的方式互相交互。特定任务上的泛化误差可以随着协同任务培训,但在竞争任务训练时也可以恶化。该理论激励了我们名为Model动物园的方法,这是从升压文献的启发,增长了小型型号的集合,每个集中都在持续学习的一集中训练。我们展示了模型动物园的准确性提高了各种持续学习基准问题。
translated by 谷歌翻译
持续学习研究的主要重点领域是通过设计新算法对分布变化更强大的新算法来减轻神经网络中的“灾难性遗忘”问题。尽管持续学习文献的最新进展令人鼓舞,但我们对神经网络的特性有助于灾难性遗忘的理解仍然有限。为了解决这个问题,我们不关注持续的学习算法,而是在这项工作中专注于模型本身,并研究神经网络体系结构对灾难性遗忘的“宽度”的影响,并表明宽度在遗忘遗产方面具有出人意料的显着影响。为了解释这种效果,我们从各个角度研究网络的学习动力学,例如梯度正交性,稀疏性和懒惰的培训制度。我们提供了与不同架构和持续学习基准之间的经验结果一致的潜在解释。
translated by 谷歌翻译
Lack of performance when it comes to continual learning over non-stationary distributions of data remains a major challenge in scaling neural network learning to more human realistic settings. In this work we propose a new conceptualization of the continual learning problem in terms of a temporally symmetric trade-off between transfer and interference that can be optimized by enforcing gradient alignment across examples. We then propose a new algorithm, Meta-Experience Replay (MER), that directly exploits this view by combining experience replay with optimization based meta-learning. This method learns parameters that make interference based on future gradients less likely and transfer based on future gradients more likely. 1 We conduct experiments across continual lifelong supervised learning benchmarks and non-stationary reinforcement learning environments demonstrating that our approach consistently outperforms recently proposed baselines for continual learning. Our experiments show that the gap between the performance of MER and baseline algorithms grows both as the environment gets more non-stationary and as the fraction of the total experiences stored gets smaller.
translated by 谷歌翻译
One major obstacle towards AI is the poor ability of models to solve new problems quicker, and without forgetting previously acquired knowledge. To better understand this issue, we study the problem of continual learning, where the model observes, once and one by one, examples concerning a sequence of tasks. First, we propose a set of metrics to evaluate models learning over a continuum of data. These metrics characterize models not only by their test accuracy, but also in terms of their ability to transfer knowledge across tasks. Second, we propose a model for continual learning, called Gradient Episodic Memory (GEM) that alleviates forgetting, while allowing beneficial transfer of knowledge to previous tasks. Our experiments on variants of the MNIST and CIFAR-100 datasets demonstrate the strong performance of GEM when compared to the state-of-the-art.
translated by 谷歌翻译
A major problem in machine learning is that of inductive bias: how to choose a learner's hypothesis space so that it is large enough to contain a solution to the problem being learnt, yet small enough to ensure reliable generalization from reasonably-sized training sets. Typically such bias is supplied by hand through the skill and insights of experts. In this paper a model for automatically learning bias is investigated. The central assumption of the model is that the learner is embedded within an environment of related learning tasks. Within such an environment the learner can sample from multiple tasks, and hence it can search for a hypothesis space that contains good solutions to many of the problems in the environment. Under certain restrictions on the set of all hypothesis spaces available to the learner, we show that a hypothesis space that performs well on a sufficiently large number of training tasks will also perform well when learning novel tasks in the same environment. Explicit bounds are also derived demonstrating that learning multiple tasks within an environment of related tasks can potentially give much better generalization than learning a single task.
translated by 谷歌翻译
In continual learning (CL), the goal is to design models that can learn a sequence of tasks without catastrophic forgetting. While there is a rich set of techniques for CL, relatively little understanding exists on how representations built by previous tasks benefit new tasks that are added to the network. To address this, we study the problem of continual representation learning (CRL) where we learn an evolving representation as new tasks arrive. Focusing on zero-forgetting methods where tasks are embedded in subnetworks (e.g., PackNet), we first provide experiments demonstrating CRL can significantly boost sample efficiency when learning new tasks. To explain this, we establish theoretical guarantees for CRL by providing sample complexity and generalization error bounds for new tasks by formalizing the statistical benefits of previously-learned representations. Our analysis and experiments also highlight the importance of the order in which we learn the tasks. Specifically, we show that CL benefits if the initial tasks have large sample size and high "representation diversity". Diversity ensures that adding new tasks incurs small representation mismatch and can be learned with few samples while training only few additional nonzero weights. Finally, we ask whether one can ensure each task subnetwork to be efficient during inference time while retaining the benefits of representation learning. To this end, we propose an inference-efficient variation of PackNet called Efficient Sparse PackNet (ESPN) which employs joint channel & weight pruning. ESPN embeds tasks in channel-sparse subnets requiring up to 80% less FLOPs to compute while approximately retaining accuracy and is very competitive with a variety of baselines. In summary, this work takes a step towards data and compute-efficient CL with a representation learning perspective. GitHub page: https://github.com/ucr-optml/CtRL
translated by 谷歌翻译
所有著名的机器学习算法构成了受监督和半监督的学习工作,只有在一个共同的假设下:培训和测试数据遵循相同的分布。当分布变化时,大多数统计模型必须从新收集的数据中重建,对于某些应用程序,这些数据可能是昂贵或无法获得的。因此,有必要开发方法,以减少在相关领域中可用的数据并在相似领域中进一步使用这些数据,从而减少需求和努力获得新的标签样品。这引起了一个新的机器学习框架,称为转移学习:一种受人类在跨任务中推断知识以更有效学习的知识能力的学习环境。尽管有大量不同的转移学习方案,但本调查的主要目的是在特定的,可以说是最受欢迎的转移学习中最受欢迎的次级领域,概述最先进的理论结果,称为域适应。在此子场中,假定数据分布在整个培训和测试数据中发生变化,而学习任务保持不变。我们提供了与域适应性问题有关的现有结果的首次最新描述,该结果涵盖了基于不同统计学习框架的学习界限。
translated by 谷歌翻译
持续学习需要与一系列任务的逐步兼容性。但是,模型体系结构的设计仍然是一个悬而未决的问题:一般而言,以一组共享的参数学习所有任务都受到任务之间的严重干扰;使用专用参数子空间学习每个任务时,受到可扩展性的限制。在这项工作中,我们从理论上分析了在不断学习中学习可塑性和记忆稳定性的概括错误,这可以在任务分布之间的(1)差异,(2)损失景观和(3)参数的覆盖率之间的差异。空间。然后,受到强大的生物学学习系统的启发,该系统通过多个平行的隔室处理顺序体验,我们建议将小型持续学习者(COSCL)的合作作为持续学习的一般策略。具体而言,我们介绍了一个架构,具有固定数量的较窄子网络,以并联学习所有增量任务,这可以自然地通过改善上限的三个组件来减少两个错误。为了增强这一优势,我们鼓励通过惩罚其功能表示的预测差异来合作这些子网络。有了固定的参数预算,COSCL可以将各种代表性的持续学习方法提高较大的利润率(例如,CIFAR-100-SC最高10.64%,CIFAR-100-RS为9.33%,CUB-200-100-100-100-100-100-100-100-100-100-100-100-100-100- 2011年和6.72%的小象征)并实现了新的最新性能。
translated by 谷歌翻译
根据互补学习系统(CLS)理论〜\ cite {mcclelland1995there}在神经科学中,人类通过两个补充系统有效\ emph {持续学习}:一种快速学习系统,以海马为中心,用于海马,以快速学习细节,个人体验,个人体验,个人体验,个人体验,个人体验,个人体验,个人体验,个人体验的快速学习, ;以及位于新皮层中的缓慢学习系统,以逐步获取有关环境的结构化知识。在该理论的激励下,我们提出\ emph {dualnets}(对于双网络),这是一个一般的持续学习框架,该框架包括一个快速学习系统,用于监督从特定任务和慢速学习系统中的模式分离代表学习,用于表示任务的慢学习系统 - 不可知论的一般代表通过自我监督学习(SSL)。双网符可以无缝地将两种表示类型纳入整体框架中,以促进在深层神经网络中更好地持续学习。通过广泛的实验,我们在各种持续的学习协议上展示了双网络的有希望的结果,从标准离线,任务感知设置到具有挑战性的在线,无任务的场景。值得注意的是,在Ctrl〜 \ Cite {veniat2020202020202020202020202020202020202020202020202020202020202021- coite {ostapenko2021-continual}的基准中。此外,我们进行了全面的消融研究,以验证双nets功效,鲁棒性和可伸缩性。代码可在\ url {https://github.com/phquang/dualnet}上公开获得。
translated by 谷歌翻译
Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern (1) a taxonomy and extensive overview of the state-of-the-art; (2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner; (3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time and storage.
translated by 谷歌翻译
我们考虑在对抗环境中的强大学习模型。学习者获得未腐败的培训数据,并访问可能受到测试期间对手影响的可能腐败。学习者的目标是建立一个强大的分类器,该分类器将在未来的对抗示例中进行测试。每个输入的对手仅限于$ k $可能的损坏。我们将学习者 - 对手互动建模为零和游戏。该模型与Schmidt等人的对抗示例模型密切相关。 (2018); Madry等。 (2017)。我们的主要结果包括对二进制和多类分类的概括界限,以及实现的情况(回归)。对于二元分类设置,我们都拧紧Feige等人的概括。 (2015年),也能够处理无限假设类别。样本复杂度从$ o(\ frac {1} {\ epsilon^4} \ log(\ frac {| h |} {\ delta})$ to $ o \ big(\ frac {1} { epsilon^2}(kvc(h)\ log^{\ frac {3} {2}+\ alpha}(kvc(h))+\ log(\ frac {1} {\ delta} {\ delta})\ big)\ big)\ big)$ for任何$ \ alpha> 0 $。此外,我们将算法和概括从二进制限制到多类和真实价值的案例。一路上,我们获得了脂肪震惊的尺寸和$ k $ fold的脂肪的尺寸和Rademacher复杂性的结果最大值的功能类别;这些可能具有独立的兴趣。对于二进制分类,Feige等人(2015年)使用遗憾的最小化算法和Erm Oracle作为黑匣子;我们适应了多类和回归设置。该算法为我们提供了给定培训样本中的球员的近乎最佳政策。
translated by 谷歌翻译
我们引入了一个新的培训范式,该范围对神经网络参数空间进行间隔约束以控制遗忘。当代持续学习(CL)方法从一系列数据流有效地培训神经网络,同时减少灾难性遗忘的负面影响,但它们不能提供任何确保的确保网络性能不会随着时间的流逝而无法控制地恶化。在这项工作中,我们展示了如何通过将模型的持续学习作为其参数空间的持续收缩来遗忘。为此,我们提出了Hypertrectangle训练,这是一种新的训练方法,其中每个任务都由参数空间中的超矩形表示,完全包含在先前任务的超矩形中。这种配方将NP-HARD CL问题降低到多项式时间,同时提供了完全防止遗忘的弹性。我们通过开发Intercontinet(间隔持续学习)算法来验证我们的主张,该算法利用间隔算术来有效地将参数区域建模为高矩形。通过实验结果,我们表明我们的方法在不连续的学习设置中表现良好,而无需存储以前的任务中的数据。
translated by 谷歌翻译
Continual Learning (CL) is a field dedicated to devise algorithms able to achieve lifelong learning. Overcoming the knowledge disruption of previously acquired concepts, a drawback affecting deep learning models and that goes by the name of catastrophic forgetting, is a hard challenge. Currently, deep learning methods can attain impressive results when the data modeled does not undergo a considerable distributional shift in subsequent learning sessions, but whenever we expose such systems to this incremental setting, performance drop very quickly. Overcoming this limitation is fundamental as it would allow us to build truly intelligent systems showing stability and plasticity. Secondly, it would allow us to overcome the onerous limitation of retraining these architectures from scratch with the new updated data. In this thesis, we tackle the problem from multiple directions. In a first study, we show that in rehearsal-based techniques (systems that use memory buffer), the quantity of data stored in the rehearsal buffer is a more important factor over the quality of the data. Secondly, we propose one of the early works of incremental learning on ViTs architectures, comparing functional, weight and attention regularization approaches and propose effective novel a novel asymmetric loss. At the end we conclude with a study on pretraining and how it affects the performance in Continual Learning, raising some questions about the effective progression of the field. We then conclude with some future directions and closing remarks.
translated by 谷歌翻译
模块化是持续学习(CL)的令人信服的解决方案,是相关任务建模的问题。学习和组合模块来解决不同的任务提供了一种抽象来解决CL的主要挑战,包括灾难性的遗忘,向后和向前传输跨任务以及子线性模型的增长。我们引入本地模块组成(LMC),该方法是模块化CL的方法,其中每个模块都提供了局部结构组件,其估计模块与输入的相关性。基于本地相关评分进行动态模块组合。我们展示了对任务身份(IDS)的不可知性来自(本地)结构学习,该结构学习是特定于模块和/或模型特定于以前的作品,使LMC适用于与以前的作品相比的更多CL设置。此外,LMC还跟踪输入分布的统计信息,并在检测到异常样本时添加新模块。在第一组实验中,LMC与最近的持续转移学习基准上的现有方法相比,不需要任务标识。在另一个研究中,我们表明结构学习的局部性允许LMC插入相关但未遵守的任务(OOD),以及在不同任务序列上独立于不同的任务序列培训的模块化网络,而无需任何微调。最后,在寻找LMC的限制,我们在30和100个任务的更具挑战性序列上研究它,展示了本地模块选择在存在大量候选模块时变得更具挑战性。在此设置中,与Oracle基准的基线相比,最佳执行LMC产生的模块更少,但它达到了较低的总体精度。 CodeBase可在https://github.com/oleksost/lmc下找到。
translated by 谷歌翻译
持续的学习方法努力减轻灾难性遗忘(CF),在学习新任务时,从以前学习的任务中丢失了知识。在这些算法中,有些在训练时维护以前任务中的样本子集。这些样本称为内存。这些方法表现出出色的性能,同时在概念上简单易于实现。然而,尽管它们很受欢迎,但几乎没有做任何事情来理解要包含在记忆中的元素。当前,这种记忆通常是通过随机抽样填充的,没有指导原则可以有助于保留以前的知识。在这项工作中,我们提出了一个基于称为一致性意识采样(CAWS)的样本的学习一致性的标准。该标准优先考虑通过深网更容易学习的样本。我们对三种不同的基于内存的方法进行研究:AGEM,GDUMB和经验重播,在MNIST,CIFAR-10和CIFAR-100数据集上。我们表明,使用最一致的元素在受到计算预算的约束时会产生性能提高;如果在没有这种约束的情况下,随机抽样是一个强大的基线。但是,在经验重播上使用CAWS可以改善随机基线的性能。最后,我们表明CAWS取得了与流行的内存选择方法相似的结果,同时需要大大减少计算资源。
translated by 谷歌翻译
由于其非参数化干扰和灾难性遗忘的非参数化能力,核心连续学习\ Cite {derakhshani2021kernel}最近被成为一个强大的持续学习者。不幸的是,它的成功是以牺牲一个明确的内存为代价来存储来自过去任务的样本,这妨碍了具有大量任务的连续学习设置的可扩展性。在本文中,我们介绍了生成的内核持续学习,探讨了生成模型与内核之间的协同作用以进行持续学习。生成模型能够生产用于内核学习的代表性样本,其消除了在内核持续学习中对内存的依赖性。此外,由于我们仅在生成模型上重播,我们避免了与在整个模型上需要重播的先前的方法相比,在计算上更有效的情况下避免任务干扰。我们进一步引入了监督的对比正规化,使我们的模型能够为更好的基于内核的分类性能产生更具辨别性样本。我们对三种广泛使用的连续学习基准进行了广泛的实验,展示了我们贡献的能力和益处。最值得注意的是,在具有挑战性的SplitCifar100基准测试中,只需一个简单的线性内核,我们获得了与内核连续学习的相同的准确性,对于内存的十分之一,或者对于相同的内存预算的10.1%的精度增益。
translated by 谷歌翻译
经典的机器学习算法通常假设绘制数据是i.i.d的。来自固定概率分布。最近,持续学习成为机器学习的快速增长领域,在该领域中,该假设放松,即数据分布是非平稳的,并且随着时间的推移而变化。本文通过上下文变量$ c $表示数据分布的状态。 $ c $的漂移导致数据分布漂移。上下文漂移可能会改变目标分布,输入分布或两者兼而有之。此外,分布漂移可能是突然的或逐渐的。在持续学习中,环境漂移可能会干扰学习过程并擦除以前学习的知识。因此,持续学习算法必须包括处理此类漂移的专业机制。在本文中,我们旨在识别和分类不同类型的上下文漂移和潜在的假设,以更好地表征各种持续学习的场景。此外,我们建议使用分布漂移框架来提供对连续学习领域常用的几个术语的更精确的定义。
translated by 谷歌翻译
人类和其他动物的先天能力学习多样化,经常干扰,在整个寿命中的知识和技能范围是自然智能的标志,具有明显的进化动机。同时,人工神经网络(ANN)在一系列任务和域中学习的能力,组合和重新使用所需的学习表现,是人工智能的明确目标。这种能力被广泛描述为持续学习,已成为机器学习研究的多产子场。尽管近年来近年来深度学习的众多成功,但跨越域名从图像识别到机器翻译,因此这种持续的任务学习已经证明了具有挑战性的。在具有随机梯度下降的序列上训练的神经网络通常遭受代表性干扰,由此给定任务的学习权重有效地覆盖了在灾难性遗忘的过程中的先前任务的权重。这代表了对更广泛的人工学习系统发展的主要障碍,能够以类似于人类的方式积累时间和任务空间的知识。伴随的选定论文和实施存储库可以在https://github.com/mccaffary/continualualuallning找到。
translated by 谷歌翻译