随着迷你无人机在平民工作领域变得越来越有用,他们需要在混乱的环境中安全操作的方法的需求正在增长,尤其是对于固定翼无人机而言,由于它们无法遵循停止执行的执行方法。本文提出了初步研究,以设计一种基于人工电位场算法中使用的排斥力的改善的定义,以设计一种反应性碰撞算法,以允许在杂乱无章的动态环境中可行且安全的固定翼无人机导航。我们在多种情况下提出了改进定义的模拟结果,我们还讨论了未来的研究以改善这些结果。
translated by 谷歌翻译
近年来,无人驾驶汽车(UAV)用于众多检查和视频捕获任务。但是,在障碍附近手动控制无人机是具有挑战性的,并且构成了高风险。即使对于自动飞行,全球导航计划也可能太慢,无法应对新感知的障碍。诸如风之类的干扰可能会导致与计划中的轨迹偏离。在这项工作中,我们提出了一种快速的预测障碍方法,该方法不取决于更高级别的本地化或映射,并保持无人机的动态飞行功能。它直接在LIDAR范围内实时运行,并通过计算范围图像内的角电位字段来调整当前飞行方向。随后根据轨迹预测和接触时间估计来确定速度幅度。使用硬件式模拟评估我们的方法。它可以使无人机保持安全距离,同时允许比以前直接在传感器数据上运行的反应性障碍物方法更高的飞行速度。
translated by 谷歌翻译
热方程驱动区域覆盖范围(HEDAC)是由潜在场的梯度引导的最先进的多机颈运动控制。特此实施有限元方法以获得Helmholtz部分微分方程的解决方案,该方程对测量运动控制的潜在字段进行了建模。这使我们能够调查任意形状的领域,并以优雅而健壮的方式包括Hedac的基本想法。对于简单的运动运动运动,通过将试剂运动用电位的梯度引导,可以成功处理障碍和边界避免限制。但是,包括其他约束,例如固定障碍物和移动障碍物的最小间隙距离以及最小的路径曲率半径,都需要控制算法的进一步交替。我们通过基于无碰撞逃生路线操纵的直接优化问题制定了一种相对简单但可靠的方法来处理这些约束的方法。这种方法提供了保证的避免碰撞机制,同时由于优化问题分配而在计算上是便宜的。在三个现实的测量场景模拟中评估了所提出的运动控制,显示了测量的有效性和控制算法的鲁棒性。此外,突出了由于定义不当的测量场景而引起的潜在操纵困难,我们提供了有关如何超越它们的指南。结果是有希望的,并表明了对自主测量和潜在的其他HEDAC利用的拟议受限的多代理运动控制的现实适用性。
translated by 谷歌翻译
In this paper a global reactive motion planning framework for robotic manipulators in complex dynamic environments is presented. In particular, the circular field predictions (CFP) planner from Becker et al. (2021) is extended to ensure obstacle avoidance of the whole structure of a robotic manipulator. Towards this end, a motion planning framework is developed that leverages global information about promising avoidance directions from arbitrary configuration space motion planners, resulting in improved global trajectories while reactively avoiding dynamic obstacles and decreasing the required computational power. The resulting motion planning framework is tested in multiple simulations with complex and dynamic obstacles and demonstrates great potential compared to existing motion planning approaches.
translated by 谷歌翻译
This paper proposes a novel controller framework that provides trajectory tracking for an Aerial Manipulator (AM) while ensuring the safe operation of the system under unknown bounded disturbances. The AM considered here is a 2-DOF (degrees-of-freedom) manipulator rigidly attached to a UAV. Our proposed controller structure follows the conventional inner loop PID control for attitude dynamics and an outer loop controller for tracking a reference trajectory. The outer loop control is based on the Model Predictive Control (MPC) with constraints derived using the Barrier Lyapunov Function (BLF) for the safe operation of the AM. BLF-based constraints are proposed for two objectives, viz. 1) To avoid the AM from colliding with static obstacles like a rectangular wall, and 2) To maintain the end effector of the manipulator within the desired workspace. The proposed BLF ensures that the above-mentioned objectives are satisfied even in the presence of unknown bounded disturbances. The capabilities of the proposed controller are demonstrated through high-fidelity non-linear simulations with parameters derived from a real laboratory scale AM. We compare the performance of our controller with other state-of-the-art MPC controllers for AM.
translated by 谷歌翻译
For guiding the UAV swarm to pass through narrow openings, a trapezoid virtual tube is designed in our previous work. In this paper, we generalize its application range to the condition that there exist obstacles inside the trapezoid virtual tube and UAVs have strict speed constraints. First, a distributed vector field controller is proposed for the trapezoid virtual tube with no obstacle inside. The relationship between the trapezoid virtual tube and the speed constraints is also presented. Then, a switching logic for the obstacle avoidance is put forward. The key point is to divide the trapezoid virtual tube containing obstacles into several sub trapezoid virtual tubes with no obstacle inside. Formal analyses and proofs are made to show that all UAVs are able to pass through the trapezoid virtual tube safely. Besides, the effectiveness of the proposed method is validated by numerical simulations and real experiments.
translated by 谷歌翻译
在本文中,我们提出了一种反应性约束导航方案,并避免了无人驾驶汽车(UAV)的嵌入式障碍物,以便在障碍物密集的环境中实现导航。拟议的导航体系结构基于非线性模型预测控制(NMPC),并利用板载2D激光雷达来检测障碍物并在线转换环境的关键几何信息为NMPC的参数约束,以限制可用位置空间的可用位置空间无人机。本文还重点介绍了所提出的反应导航方案的现实实施和实验验证,并将其应用于多个具有挑战性的实验室实验中,我们还与相关的反应性障碍物避免方法进行了比较。提出的方法中使用的求解器是优化引擎(开放)和近端平均牛顿进行最佳控制(PANOC)算法,其中采用了惩罚方法来正确考虑导航任务期间的障碍和输入约束。拟议的新颖方案允许快速解决方案,同时使用有限的车载计算能力,这是无人机的整体闭环性能的必需功能,并在多个实时场景中应用。内置障碍物避免和实时适用性的结合使所提出的反应性约束导航方案成为无人机的优雅框架,能够执行快速的非线性控制,本地路径计划和避免障碍物,所有框架都嵌入了控制层中。
translated by 谷歌翻译
导航动态环境要求机器人生成无碰撞的轨迹,并积极避免移动障碍。大多数以前的作品都基于一个单个地图表示形式(例如几何,占用率或ESDF地图)设计路径计划算法。尽管他们在静态环境中表现出成功,但由于地图表示的限制,这些方法无法同时可靠地处理静态和动态障碍。为了解决该问题,本文提出了一种利用机器人在板载视觉的基于梯度的B-Spline轨迹优化算法。深度视觉使机器人能够基于体素图以几何形式跟踪和表示动态对象。拟议的优化首先采用基于圆的指南算法,以近似避免静态障碍的成本和梯度。然后,使用视觉检测的移动对象,我们的后水平距离场同时用于防止动态碰撞。最后,采用迭代重新指导策略来生成无碰撞轨迹。仿真和物理实验证明,我们的方法可以实时运行以安全地导航动态环境。
translated by 谷歌翻译
本文在移动平台上介绍了四摩托车的自动起飞和着陆系统。设计的系统解决了三个具有挑战性的问题:快速姿势估计,受限的外部定位和有效避免障碍物。具体而言,首先,我们基于Aruco标记设计了着陆识别和定位系统,以帮助四极管快速计算相对姿势。其次,我们利用基于梯度的本地运动计划者快速生成无冲突的参考轨迹;第三,我们构建了一台自主状态机器,使四极管能够完全自治完成其起飞,跟踪和着陆任务;最后,我们在模拟,现实世界和室外环境中进行实验,以验证系统的有效性并证明其潜力。
translated by 谷歌翻译
This paper presents trajectory planning for three-dimensional autonomous multi-UAV volume coverage and visual inspection based on the Heat Equation Driven Area Coverage (HEDAC) algorithm. The method designs a potential field to achieve the target density and generate trajectories using potential gradients to direct UAVs to regions of a higher potential. Collisions are prevented by implementing a distance field and correcting the agent's directional vector if the distance threshold is reached. The method is successfully tested for volume coverage and visual inspection of complex structures such as wind turbines and a bridge. For visual inspection, the algorithm is supplemented with camera direction control. A field containing the nearest distance from any point in the domain to the structure is designed and this field's gradient provides the camera orientation throughout the trajectory. The bridge inspection test case is compared with a state-of-the-art method where the HEDAC algorithm allowed more surface area to be inspected under the same conditions. The limitations of the HEDAC method are analyzed, focusing on computational efficiency and adequacy of spatial coverage to approximate the surface coverage. The proposed methodology offers flexibility in various setup parameters and is applicable to real-world inspection tasks.
translated by 谷歌翻译
这项研究提出了一种分布式算法,该算法通过自动决策,平滑的羊群和分布良好的捕获来使代理的自适应分组捕获多个目标。代理商根据环境信息做出自己的决定。提出了一种改进的人工潜在方法,以使代理能够平稳自然地改变形成以适应环境。拟议的策略确保了群体的协调发展在群体上陷入多个目标的现象。我们使用仿真实验和设计指标来验证提出方法的性能,以分析这些模拟和物理实验。
translated by 谷歌翻译
本文介绍了设计,开发,并通过IISC-TCS团队为穆罕默德·本·扎耶德国际机器人挑战赛2020年挑战1的目标的挑战1硬件 - 软件系统的测试是抓住从移动和机动悬挂球UAV和POP气球锚定到地面,使用合适的操纵器。解决这一挑战的重要任务包括具有高效抓取和突破机制的硬件系统的设计和开发,考虑到体积和有效载荷的限制,使用适用于室外环境的可视信息的准确目标拦截算法和开发动态多功能机空中系统的软件架构,执行复杂的动态任务。在本文中,设计了具有末端执行器的单个自由度机械手设计用于抓取和突发,并且开发了鲁棒算法以拦截在不确定的环境中的目标。基于追求参与和人工潜在功能的概念提出了基于视觉的指导和跟踪法。本工作中提供的软件架构提出了一种操作管理系统(OMS)架构,其在多个无人机之间协同分配静态和动态任务,以执行任何给定的任务。这项工作的一个重要方面是所有开发的系统都设计用于完全自主模式。在这项工作中还包括对凉亭环境和现场实验结果中完全挑战的模拟的详细描述。所提出的硬件软件系统对反UAV系统特别有用,也可以修改以满足其他几种应用。
translated by 谷歌翻译
无人机(无人驾驶飞机)动态包围是一个具有巨大潜力的新兴领域。研究人员通常会从生物系统中获得灵感,要么是从宏观世界(如鱼类学校或鸟类羊群)或类似基因调节网络等微世界的灵感。但是,大多数群体控制算法都取决于集中控制,全球信息获取或相邻代理之间的通信。在这项工作中,我们提出了一种纯粹基于视觉的分布式群体控制方法,而没有任何直接通信,例如,群体的代理无人机可以生成一个陷入的模式,以完全基于其安装的全向视觉传感器包围无人机的逃脱目标。还设计了描述每种无人机行为模型的有限状态机器,以便一群无人机可以集体地搜索和捕获目标。我们在各种模拟和现实实验中验证了所提出方法的有效性和效率。
translated by 谷歌翻译
由于事件的范围有限,在复杂且高度可变的环境中,避免路径计划和碰撞是具有挑战性的。在文献中,有多种基于模型和学习的方法需要有效地部署大量的计算资源,并且可能具有有限的一般性。我们提出了一种基于全球稳定的被动控制器的计划算法,该算法可以在挑战性的环境条件下使用有限的计算资源计划平滑轨迹。该体系结构将最近提出的分形阻抗控制器与有限时间不变性区域结合在一起。由于该方法基于阻抗控制器,因此它也可以直接用作力/扭矩控制器。我们在模拟中验证了我们的方法,以通过发放Via-toints的发行及其对低带宽反馈的稳健性来分析互动导航在挑战凹域中的能力。使用11个代理的群模拟验证了所提出方法的可扩展性。我们已经在自动式轮式平台上进行了硬件实验,以验证与动态剂(即人和机器人)相互作用的平滑度和稳健性。与依赖数字优化的其他方法相比,所提出的本地规划师的计算复杂性可以通过低功率微控制器的部署降低能源消耗。
translated by 谷歌翻译
自治系统正在成为海洋部门内无处不在和获得势头。由于运输的电气化同时发生,自主海洋船只可以降低环境影响,降低成本并提高效率。虽然仍然需要密切的监控以确保安全,但最终目标是完全自主权。一个主要的里程碑是开发一个控制系统,这足以处理任何也稳健和可靠的天气和遇到。此外,控制系统必须遵守防止海上碰撞的国际法规,以便与人类水手进行成功互动。由于Colregs被编写为人类思想来解释,因此它们以暧昧的散文写成,因此不能获得机器可读或可核实。由于这些挑战和各种情况进行了解决,古典模型的方法证明了实现和计算沉重的复杂性。在机器学习(ML)内,深增强学习(DRL)对广泛的应用表现出了很大的潜力。 DRL的无模型和自学特性使其成为自治船只的有希望的候选人。在这项工作中,使用碰撞风险理论将Colregs的子集合在于基于DRL的路径和障碍物避免系统。由此产生的自主代理在训练场景中的训练场景,孤立的遇难情况和基于AIS的真实情景模拟中动态地插值。
translated by 谷歌翻译
小型无人驾驶飞机的障碍避免对于未来城市空袭(UAM)和无人机系统(UAS)交通管理(UTM)的安全性至关重要。有许多技术用于实时强大的无人机指导,但其中许多在离散的空域和控制中解决,这将需要额外的路径平滑步骤来为UA提供灵活的命令。为提供无人驾驶飞机的操作安全有效的计算指导,我们探讨了基于近端政策优化(PPO)的深增强学习算法的使用,以指导自主UA到其目的地,同时通过连续控制避免障碍物。所提出的场景状态表示和奖励功能可以将连续状态空间映射到连续控制,以便进行标题角度和速度。为了验证所提出的学习框架的性能,我们用静态和移动障碍进行了数值实验。详细研究了与环境和安全操作界限的不确定性。结果表明,该拟议的模型可以提供准确且强大的指导,并解决了99%以上的成功率的冲突。
translated by 谷歌翻译
This paper presents a new method for integrated time-optimal routing and trajectory optimization of multirotor unmanned aerial vehicles (UAVs). Our approach extends the well-known Traveling Salesman Problem by accounting for the limited maneuverability of the UAVs due to their kinematic properties. To this end, we allow each waypoint to be traversed with a discretized velocity as well as a discretized flight direction and compute time-optimal trajectories to determine the travel time costs for each edge. We refer to this novel optimization problem as the Trajectory-based Traveling Salesman Problem (TBTSP). The results show that compared to a state-of-the-art approach for Traveling Salesman Problems with kinematic restrictions of UAVs, we can decrease mission duration by up to 15\%.
translated by 谷歌翻译
本文考虑了非独立多机器人系统的同时位置和方向计划。与仅关注最终位置限制的常见研究不同,我们将非语言移动机器人建模为刚性机构,并引入机器人最终状态的方向和位置约束。换句话说,机器人不仅应达到指定的位置,而且还应同时指出所需的方向。这个问题的挑战在于全州运动计划的不足,因为只需要通过两个控制输入来计划三个州。为此,我们根据刚体建模提出了动态矢量场(DVF)。具体而言,机器人方向的动力学被带入矢量场,这意味着向量场不再是2-D平面上的静态,而是一个动态的,而动态场却随态度角度而变化。因此,每个机器人可以沿DVF的积分曲线移动以达到所需位置,与此同时,姿态角可以在方向动力学之后收敛到指定值。随后,通过在DVF的框架下设计一个圆形向量场,我们进一步研究了运动计划中的避免障碍物和相互企业的避免。最后,提供了数值仿真示例,以验证提出的方法的有效性。
translated by 谷歌翻译
本文解决了在通信和传感器有限的动态环境中运行的移动机器人的安全计划和控制问题。在这种情况下,机器人无法感知周围的对象,而必须像在水下应​​用中那样依靠间歇性的外部信息。在这种情况下,挑战是机器人必须仅使用此陈旧数据计划,同时考虑到数据中的任何噪声或环境中的不确定性。为了应对这一挑战,我们提出了一种构图技术,该技术利用神经网络仅使用间歇性信息来快速通过拥挤和动态的环境来计划和控制机器人。具体而言,我们的工具使用可及性分析和潜在领域来训练能够生成安全控制动作的神经网络。我们通过跨越拥挤的运输渠道的水下车辆以及在通信和传感器限制环境中进行地面车辆进行的真实实验,展示了我们的技术。
translated by 谷歌翻译
结构建筑物的坍塌通常被认为是潜在的错失,已经证明了建筑物的损害,导致事故。必须连续监测人类访问受到限制的故障的任何建筑物。通过在计算机视野领域出现的无人机(无人驾驶飞行器),监测任何建筑物并检测这些故障都被视为一种可能性。本文提出了一种新的方法,其中自动无人机遍历目标建筑物,检测建筑物中的任何潜在故障,并定位故障。通过所提供的建筑物的尺寸,产生了建筑物周围的路径。由UAV的板载摄像机捕获的图像通过神经网络系统来确认存在故障。一旦检测到故障,UAV就会向检测到裂缝的相应位置时操纵。使用ROS(机器人操作系统)使用初始化ROS包装器的AIRSIM环境进行仿真,并提供ROS和AIRSIM的集成接口,与UAV一起模拟。
translated by 谷歌翻译