在分析此类数据中,高光谱脉冲仍然是最具挑战性的任务之一。深度学习一直在田野上盛开,并被证明超过了其他经典的不混合技术,并且可以有效地部署在配备高光谱成像器的地球观察卫星上。在这封信中,我们遵循这一研究途径,并提出了一个多分支卷积神经网络,该网络受益于融合过程中的光谱,空间和光谱空间特征。我们的实验结果得到了消融研究的支持,表明我们的技术从文献中优于其他人,而导致了更高质量的分数丰度估计。此外,我们研究了减少训练集对所有算法及其对噪音的稳健性的影响的影响,因为捕获大型且代表性的地面真相集是耗时且在实践中成本高昂的,尤其是在新兴的地球观察方案中。
translated by 谷歌翻译
通过优化农业管理实践来维持农场的可持续性有助于建立更适合星球的环境。新兴的卫星任务可以获取多光谱图像,从而捕获有关扫描区域的更详细的光谱信息,因此,在农业应用中的分析过程中,我们可以从细微的光谱特征中受益。我们介绍了一种从10 m Sentinel-2多光谱图像系列中提取2.5 m栽培地图的方法,该图像受益于紧凑型卷积神经网络。实验表明,与U-NET相比,我们的模型不仅通过提供更高质量的分割图来超过经典和深度的机器学习技术,而且还可以大大减少内存足迹(我们的模型的几乎可训练的参数,最多具有31m参数的参数U-nets)。在任务中,这种记忆节俭是关键的,这使我们能够在轨道进入轨道后将模型链接到AI驱动的卫星,因为由于时间限制,不可能发送大型网。
translated by 谷歌翻译
在本文中,我们引入了一种新算法,该算法基于原型分析,用于假设末日成员的线性混合,用于盲目的高光谱脉冲。原型分析是该任务的自然表述。该方法不需要存在纯像素(即包含单个材料的像素),而是将末端成员表示为原始高光谱图像中几个像素的凸组合。我们的方法利用了熵梯度下降策略,(i)比传统的原型分析算法为高光谱脉冲提供更好的解决方案,并且(ii)导致有效的GPU实现。由于运行我们算法的单个实例很快,我们还提出了一个结合机制以及适当的模型选择程序,该过程使我们的方法可鲁棒性到超参数选择,同时保持计算复杂性合理。通过使用六个标准的真实数据集,我们表明我们的方法的表现优于最先进的矩阵分解和最新的深度学习方法。我们还提供开源pytorch实施:https://github.com/inria-thoth/edaa。
translated by 谷歌翻译
哥内克人Sentinel Imagery的纯粹卷的可用性为使用深度学习的大尺度创造了新的土地利用陆地覆盖(Lulc)映射的机会。虽然在这种大型数据集上培训是一个非琐碎的任务。在这项工作中,我们试验Lulc Image分类和基准不同最先进模型的Bigearthnet数据集,包括卷积神经网络,多层感知,视觉变压器,高效导通和宽残余网络(WRN)架构。我们的目标是利用分类准确性,培训时间和推理率。我们提出了一种基于用于网络深度,宽度和输入数据分辨率的WRNS复合缩放的高效导通的框架,以有效地训练和测试不同的模型设置。我们设计一种新颖的缩放WRN架构,增强了有效的通道注意力机制。我们提出的轻量级模型具有较小的培训参数,实现所有19个LULC类的平均F分类准确度达到4.5%,并且验证了我们使用的resnet50最先进的模型速度快两倍作为基线。我们提供超过50种培训的型号,以及我们在多个GPU节点上分布式培训的代码。
translated by 谷歌翻译
In recent hyperspectral unmixing (HU) literature, the application of deep learning (DL) has become more prominent, especially with the autoencoder (AE) architecture. We propose a split architecture and use a pseudo-ground truth for abundances to guide the `unmixing network' (UN) optimization. Preceding the UN, an `approximation network' (AN) is proposed, which will improve the association between the centre pixel and its neighbourhood. Hence, it will accentuate spatial correlation in the abundances as its output is the input to the UN and the reference for the `mixing network' (MN). In the Guided Encoder-Decoder Architecture for Hyperspectral Unmixing with Spatial Smoothness (GAUSS), we proposed using one-hot encoded abundances as the pseudo-ground truth to guide the UN; computed using the k-means algorithm to exclude the use of prior HU methods. Furthermore, we release the single-layer constraint on MN by introducing the UN generated abundances in contrast to the standard AE for HU. Secondly, we experimented with two modifications on the pre-trained network using the GAUSS method. In GAUSS$_\textit{blind}$, we have concatenated the UN and the MN to back-propagate the reconstruction error gradients to the encoder. Then, in the GAUSS$_\textit{prime}$, abundance results of a signal processing (SP) method with reliable abundance results were used as the pseudo-ground truth with the GAUSS architecture. According to quantitative and graphical results for four experimental datasets, the three architectures either transcended or equated the performance of existing HU algorithms from both DL and SP domains.
translated by 谷歌翻译
确实,卷积神经网络(CNN)更合适。然而,固定内核大小使传统的CNN太具体,既不灵活也不有利于特征学习,从而影响分类准确性。不同内核大小网络的卷积可以通过捕获更多辨别和相关信息来克服这个问题。鉴于此,所提出的解决方案旨在将3D和2D成立网的核心思想与促进混合方案中的HSIC CNN性能提升。生成的\ Textit {注意融合混合网络}(AFNET)基于三个关注融合的并行混合子网,每个块中的不同内核使用高级功能,以增强最终的地面图。简而言之,AFNET能够选择性地过滤滤除对分类至关重要的辨别特征。与最先进的模型相比,HSI数据集的几次测试为AFNET提供了竞争力的结果。拟议的管道实现,实际上,印度松树的总体准确性为97 \%,博茨瓦纳100 \%,帕尔茨大学,帕维亚中心和萨利纳斯数据集的99 \%。
translated by 谷歌翻译
This paper proposes a non-data-driven deep neural network for spectral image recovery problems such as denoising, single hyperspectral image super-resolution, and compressive spectral imaging reconstruction. Unlike previous methods, the proposed approach, dubbed Mixture-Net, implicitly learns the prior information through the network. Mixture-Net consists of a deep generative model whose layers are inspired by the linear and non-linear low-rank mixture models, where the recovered image is composed of a weighted sum between the linear and non-linear decomposition. Mixture-Net also provides a low-rank decomposition interpreted as the spectral image abundances and endmembers, helpful in achieving remote sensing tasks without running additional routines. The experiments show the MixtureNet effectiveness outperforming state-of-the-art methods in recovery quality with the advantage of architecture interpretability.
translated by 谷歌翻译
最近的研究表明,在高光谱图像(HSI)分类任务中,深度学习算法的巨大潜力。然而,培训这些模型通常需要大量标记的数据。由于针对HSI的像素级注释的收集是费力且耗时的,因此开发算法可以在小样本量的情况下产生良好的性能。在这项研究中,我们提出了一个强大的自我缩放网络(RSEN)来解决这个问题。拟议的RSEN由两个子网组成,包括基本网络和一个集合网络。鉴于标记数据的监督损失以及未经标记的数据的无监督损失,基本网络和整体网络都可以相互学习,从而实现自我启动的机制。据我们所知,提出的方法是首次尝试将自我汇总技术引入HSI分类任务,该任务提供了有关如何利用HSI中未标记数据来协助网络培训的不同观点。我们进一步提出了一种新型的一致性滤波器,以增加自我同步学习的鲁棒性。在三个基准HSI数据集上进行的广泛实验表明,与最新方法相比,所提出的算法可以产生竞争性能。代码可在线获得(\ url {https://github.com/yonghaoxu/rsen})。
translated by 谷歌翻译
利用深度学习的水提取需要精确的像素级标签。然而,在像素级别标记高分辨率遥感图像非常困难。因此,我们研究如何利用点标签来提取水体并提出一种名为邻居特征聚合网络(NFANET)的新方法。与PixelLevel标签相比,Point标签更容易获得,但它们会失去许多信息。在本文中,我们利用了局部水体的相邻像素之间的相似性,并提出了邻居采样器来重塑遥感图像。然后,将采样的图像发送到网络以进行特征聚合。此外,我们使用改进的递归训练算法进一步提高提取精度,使水边界更加自然。此外,我们的方法利用相邻特征而不是全局或本地特征来学习更多代表性。实验结果表明,所提出的NFANET方法不仅优于其他研究的弱监管方法,而且还获得与最先进的结果相似。
translated by 谷歌翻译
城市土地覆盖的时间序列数据在分析城市增长模式方面具有很大的效用,不透水表面和植被的分布变化以及对城市微观气候产生影响。虽然Landsat数据非常适于这种分析,但由于长时间系列的免费图像,传统的每像素硬分类未能产生Landsat数据的全部潜力。本文提出了一种子像素分类方法,其利用Landsat-5 TM和Resorational-1 Liss-IV传感器的时间重叠。我们训练卷积神经网络,预测30米Landsat-5 TM数据的分数陆地覆盖。从2011年的Bengaluru的一个艰难的5.8M Liss-IV图像估计参考陆地覆盖分数。此外,我们从2009年使用Mumbai数据并将其与使用的结果进行了概括和卓越的性能随机森林分类器。对于Bengaluru(2011)和Mumbai(2009)数据,我们的CNN模型的平均绝对百分比误差在30M细胞水平上的内置和植被分数预测的7.2至11.3。与最近的最近的研究不同,在使用数据在空间范围进行有限的空间范围进行验证,我们的模型已经过度培训并验证了两个不同时间段的两个Mega城市的完整空间范围的数据。因此,它可以可靠地从Landsat-5 TM时间序列数据中可靠地产生30M内置和植被分数图,以分析长期城市增长模式。
translated by 谷歌翻译
高光谱成像由于其在捕获丰富的空间和光谱信息的能力上提供了多功能应用,这对于识别物质至关重要。但是,获取高光谱图像的设备昂贵且复杂。因此,已经通过直接从低成本,更多可用的RGB图像重建高光谱信息来提出了许多替代光谱成像方法。我们详细研究了来自广泛的RGB图像的这些最先进的光谱重建方法。对25种方法的系统研究和比较表明,尽管速度较低,但大多数数据驱动的深度学习方法在重建精度和质量方面都优于先前的方法。这项全面的审查可以成为同伴研究人员的富有成果的参考来源,从而进一步启发了相关领域的未来发展方向。
translated by 谷歌翻译
现代光学卫星传感器使高分辨率立体声重建。但是在观察地球从空间推动立体声匹配时挑战成像条件。在实践中,由此产生的数字表面模型(DSM)相当嘈杂,并且通常不会达到3D城市建模等高分辨率应用所需的准确性。可以说,基于低电平图像相似性的立体声对应不足,并且应该互补关于超出基本局部平滑度的预期表面几何的先验知识。为此,我们介绍了Resptepth,这是一个卷积神经网络,其在示例数据之前学习如此表达几何。 Restepth在调节图像上的细化时改进初始原始的立体声DSM。即,它充当了一个智能,学习的后处理过滤器,可以无缝地补充任何立体声匹配管道。在一系列实验中,我们发现所提出的方法始终如一地改善了定量和定性的立体声DSM。我们表明,网络权重中的先前编码捕获了城市设计的有意义的几何特征,这也概括了不同地区,甚至从一个城市到另一个城市。此外,我们证明,通过对各种立体对的训练,RESPTH可以在成像条件和采集几何体中获得足够的不变性。
translated by 谷歌翻译
Fusing satellite imagery acquired with different sensors has been a long-standing challenge of Earth observation, particularly across different modalities such as optical and Synthetic Aperture Radar (SAR) images. Here, we explore the joint analysis of imagery from different sensors in the light of representation learning: we propose to learn a joint embedding of multiple satellite sensors within a deep neural network. Our application problem is the monitoring of lake ice on Alpine lakes. To reach the temporal resolution requirement of the Swiss Global Climate Observing System (GCOS) office, we combine three image sources: Sentinel-1 SAR (S1-SAR), Terra MODIS, and Suomi-NPP VIIRS. The large gaps between the optical and SAR domains and between the sensor resolutions make this a challenging instance of the sensor fusion problem. Our approach can be classified as a late fusion that is learned in a data-driven manner. The proposed network architecture has separate encoding branches for each image sensor, which feed into a single latent embedding. I.e., a common feature representation shared by all inputs, such that subsequent processing steps deliver comparable output irrespective of which sort of input image was used. By fusing satellite data, we map lake ice at a temporal resolution of < 1.5 days. The network produces spatially explicit lake ice maps with pixel-wise accuracies > 91% (respectively, mIoU scores > 60%) and generalises well across different lakes and winters. Moreover, it sets a new state-of-the-art for determining the important ice-on and ice-off dates for the target lakes, in many cases meeting the GCOS requirement.
translated by 谷歌翻译
我们向传感器独立性(Sensei)介绍了一种新型神经网络架构 - 光谱编码器 - 通过该传感器独立性(Sensei) - 通过其中具有不同组合的光谱频带组合的多个多光谱仪器可用于训练广义深度学习模型。我们专注于云屏蔽的问题,使用几个预先存在的数据集,以及Sentinel-2的新的自由可用数据集。我们的模型显示在卫星上实现最先进的性能,它受过训练(Sentinel-2和Landsat 8),并且能够推断到传感器,它在训练期间尚未见过Landsat 7,每\ 'USAT-1,和Sentinel-3 SLST。当多种卫星用于培训,接近或超越专用单传感器型号的性能时,模型性能显示出改善。这项工作是激励遥感社区可以使用巨大各种传感器采取的数据的动机。这不可避免地导致标记用于不同传感器的努力,这限制了深度学习模型的性能,因为他们需要最佳地执行巨大的训练。传感器独立性可以使深度学习模型能够同时使用多个数据集进行培训,提高性能并使它们更广泛适用。这可能导致深入学习方法,用于在板载应用程序和地面分段数据处理中更频繁地使用,这通常需要模型在推出时或之后即将开始。
translated by 谷歌翻译
在实践中,非常苛刻,有时无法收集足够大的标记数据数据集以成功培训机器学习模型,并且对此问题的一个可能解决方案是转移学习。本研究旨在评估如何可转让的时间序列数据和哪些条件下的不同域之间的特征。在训练期间,在模型的预测性能和收敛速度方面观察到转移学习的影响。在我们的实验中,我们使用1,500和9,000个数据实例的减少数据集来模仿现实世界的条件。使用相同的缩小数据集,我们培训了两组机器学习模型:那些随着转移学习的培训和从头开始培训的机器学习模型。使用四台机器学习模型进行实验。在相同的应用领域(地震学)以及相互不同的应用领域(地震,语音,医学,金融)之间进行知识转移。我们在训练期间遵守模型的预测性能和收敛速度。为了确认所获得的结果的有效性,我们重复了实验七次并应用了统计测试以确认结果的重要性。我们研究的一般性结论是转移学习可能会增加或不会对模型的预测性能或其收敛速度产生负面影响。在更多细节中分析收集的数据,以确定哪些源域和目标域兼容以用于传输知识。我们还分析了目标数据集大小的效果和模型的选择及其超参数对转移学习的影响。
translated by 谷歌翻译
高光谱成像为各种应用提供了新的视角,包括使用空降或卫星遥感,精密养殖,食品安全,行星勘探或天体物理学的环境监测。遗憾的是,信息的频谱分集以各种劣化来源的牺牲品,并且目前获取的缺乏准确的地面“清洁”高光谱信号使得恢复任务具有挑战性。特别是,与传统的RGB成像问题相比,培训深度神经网络用于恢复难以深入展现的传统RGB成像问题。在本文中,我们提倡基于稀疏编码原理的混合方法,其保留与手工图像前导者编码域知识的经典技术的可解释性,同时允许在没有大量数据的情况下训练模型参数。我们在各种去噪基准上展示了我们的方法是计算上高效并且显着优于现有技术。
translated by 谷歌翻译
我们提出“ AITLAS:基准竞技场” - 一个开源基准测试框架,用于评估地球观察中图像分类的最新深度学习方法(EO)。为此,我们介绍了从九种不同的最先进的体系结构得出的400多个模型的全面比较分析,并将它们与来自22个具有不同尺寸的数据集的各种多级和多标签分类任务进行比较和属性。除了完全在这些数据集上训练的模型外,我们还基于在转移学习的背景下训练的模型,利用预训练的模型变体,因为通常在实践中执行。所有提出的方法都是一般的,可以轻松地扩展到本研究中未考虑的许多其他遥感图像分类任务。为了确保可重复性并促进更好的可用性和进一步的开发,所有实验资源在内的所有实验资源,包括训练的模型,模型配置和数据集的处理详细信息(以及用于培训和评估模型的相应拆分)都在存储库上公开可用:HTTPS ://github.com/biasvariancelabs/aitlas-arena。
translated by 谷歌翻译
以知情方式监测和管理地球林是解决生物多样性损失和气候变化等挑战的重要要求。虽然森林评估的传统或空中运动提供了在区域一级分析的准确数据,但将其扩展到整个国家,以外的高度分辨率几乎不可能。在这项工作中,我们提出了一种贝叶斯深度学习方法,以10米的分辨率为全国范围的森林结构变量,使用自由可用的卫星图像作为输入。我们的方法将Sentinel-2光学图像和Sentinel-1合成孔径雷达图像共同变换为五种不同的森林结构变量的地图:95th高度百分位,平均高度,密度,基尼系数和分数盖。我们从挪威的41个机载激光扫描任务中培训和测试我们的模型,并证明它能够概括取消测试区域,从而达到11%和15%之间的归一化平均值误差,具体取决于变量。我们的工作也是第一个提出贝叶斯深度学习方法的工作,以预测具有良好校准的不确定性估计的森林结构变量。这些提高了模型的可信度及其适用于需要可靠的信心估计的下游任务,例如知情决策。我们提出了一组广泛的实验,以验证预测地图的准确性以及预测的不确定性的质量。为了展示可扩展性,我们为五个森林结构变量提供挪威地图。
translated by 谷歌翻译
发现表面电阻率的传统调查方法是耗时的和劳动量的。很少有研究重点是使用遥感数据和深度学习技术找到电阻率/电导率。在这一工作中,我们通过应用各种深度学习方法评估了表面电阻率和合成孔径雷达(SAR)之间的相关性,并在美国Coso地热区域中测试了我们的假设。为了检测电阻率,使用了UAVSAR获得的L波段全偏光SAR数据,并将MT(MagnEtoteltolarics)反向电阻率数据用作地面真相。我们进行了实验,以比较各种深度学习体系结构,并建议使用双输入UNET(DI-UNET)体系结构。 Di-Unet使用深度学习架构使用完整的极化SAR数据来预测电阻率,并承诺对传统方法进行快速调查。我们提出的方法实现了从SAR数据中映射MT电阻率的结果。
translated by 谷歌翻译
Deconvolution is a widely used strategy to mitigate the blurring and noisy degradation of hyperspectral images~(HSI) generated by the acquisition devices. This issue is usually addressed by solving an ill-posed inverse problem. While investigating proper image priors can enhance the deconvolution performance, it is not trivial to handcraft a powerful regularizer and to set the regularization parameters. To address these issues, in this paper we introduce a tuning-free Plug-and-Play (PnP) algorithm for HSI deconvolution. Specifically, we use the alternating direction method of multipliers (ADMM) to decompose the optimization problem into two iterative sub-problems. A flexible blind 3D denoising network (B3DDN) is designed to learn deep priors and to solve the denoising sub-problem with different noise levels. A measure of 3D residual whiteness is then investigated to adjust the penalty parameters when solving the quadratic sub-problems, as well as a stopping criterion. Experimental results on both simulated and real-world data with ground-truth demonstrate the superiority of the proposed method.
translated by 谷歌翻译