研究的一个快速增长的领域是使用机器学习方法(例如自动编码器)来降低科学应用中数据和模型的尺寸。我们表明,自动编码器的规范配方遭受了几种可能阻碍其性能的缺陷。使用元学习方法,我们将自动编码器问题重新制定为双层优化程序,该程序明确解决了降低降低任务。我们证明,新的配方用规范的自动编码器纠正了已确定的缺陷,提供了一种实用方法来求解它,并使用简单的数值说明来展示该配方的强度。
translated by 谷歌翻译
近年来,在诸如denoing,压缩感应,介入和超分辨率等反问题中使用深度学习方法的使用取得了重大进展。尽管这种作品主要是由实践算法和实验驱动的,但它也引起了各种有趣的理论问题。在本文中,我们调查了这一作品中一些突出的理论发展,尤其是生成先验,未经训练的神经网络先验和展开算法。除了总结这些主题中的现有结果外,我们还强调了一些持续的挑战和开放问题。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
平衡系统是表达神经计算的有力方法。作为特殊情况,它们包括对神经科学和机器学习的最新兴趣模型,例如平衡复发性神经网络,深度平衡模型或元学习。在这里,我们提出了一个新的原则,用于学习具有时间和空间本地规则的此类系统。我们的原理将学习作为一个最不控制的问题,我们首先引入一个最佳控制器,以将系统带入解决方案状态,然后将学习定义为减少达到这种状态所需的控制量。我们表明,将学习信号纳入动力学作为最佳控制可以以先前未知的方式传输信用分配信息,避免将中间状态存储在内存中,并且不依赖无穷小的学习信号。在实践中,我们的原理可以使基于梯度的学习方法的强大绩效匹配,该方法应用于涉及复发性神经网络和元学习的一系列问题。我们的结果阐明了大脑如何学习并提供解决广泛的机器学习问题的新方法。
translated by 谷歌翻译
In model selection problems for machine learning, the desire for a well-performing model with meaningful structure is typically expressed through a regularized optimization problem. In many scenarios, however, the meaningful structure is specified in some discrete space, leading to difficult nonconvex optimization problems. In this paper, we connect the model selection problem with structure-promoting regularizers to submodular function minimization with continuous and discrete arguments. In particular, we leverage the theory of submodular functions to identify a class of these problems that can be solved exactly and efficiently with an agnostic combination of discrete and continuous optimization routines. We show how simple continuous or discrete constraints can also be handled for certain problem classes and extend these ideas to a robust optimization framework. We also show how some problems outside of this class can be embedded within the class, further extending the class of problems our framework can accommodate. Finally, we numerically validate our theoretical results with several proof-of-concept examples with synthetic and real-world data, comparing against state-of-the-art algorithms.
translated by 谷歌翻译
近年来,已经开发出各种基于梯度的方法来解决机器学习和计算机视觉地区的双层优化(BLO)问题。然而,这些现有方法的理论正确性和实际有效性总是依赖于某些限制性条件(例如,下层单身,LLS),这在现实世界中可能很难满足。此外,以前的文献仅证明了基于其特定的迭代策略的理论结果,因此缺乏一般的配方,以统一分析不同梯度的BLO的收敛行为。在这项工作中,我们从乐观的双级视点制定BLOS,并建立一个名为Bi-Level血液血统聚合(BDA)的新梯度的算法框架,以部分地解决上述问题。具体而言,BDA提供模块化结构,以分级地聚合上层和下层子问题以生成我们的双级迭代动态。从理论上讲,我们建立了一般会聚分析模板,并导出了一种新的证据方法,以研究基于梯度的BLO方法的基本理论特性。此外,这项工作系统地探讨了BDA在不同优化场景中的收敛行为,即,考虑从解决近似子问题返回的各种解决方案质量(即,全局/本地/静止解决方案)。广泛的实验证明了我们的理论结果,并展示了所提出的超参数优化和元学习任务算法的优越性。源代码可在https://github.com/vis-opt-group/bda中获得。
translated by 谷歌翻译
近年来,深度学习在图像重建方面取得了显着的经验成功。这已经促进了对关键用例中数据驱动方法的正确性和可靠性的精确表征的持续追求,例如在医学成像中。尽管基于深度学习的方法具有出色的性能和功效,但对其稳定性或缺乏稳定性的关注以及严重的实际含义。近年来,已经取得了重大进展,以揭示数据驱动的图像恢复方法的内部运作,从而挑战了其广泛认为的黑盒本质。在本文中,我们将为数据驱动的图像重建指定相关的融合概念,该概念将构成具有数学上严格重建保证的学习方法调查的基础。强调的一个例子是ICNN的作用,提供了将深度学习的力量与经典凸正则化理论相结合的可能性,用于设计被证明是融合的方法。这篇调查文章旨在通过提供对数据驱动的图像重建方法以及从业人员的理解,旨在通过提供可访问的融合概念的描述,并通过将一些现有的经验实践放在可靠的数学上,来推进我们对数据驱动图像重建方法的理解以及从业人员的了解。基础。
translated by 谷歌翻译
量子哈密顿学习和量子吉布斯采样的双重任务与物理和化学中的许多重要问题有关。在低温方案中,这些任务的算法通常会遭受施状能力,例如因样本或时间复杂性差而遭受。为了解决此类韧性,我们将量子自然梯度下降的概括引入了参数化的混合状态,并提供了稳健的一阶近似算法,即量子 - 固定镜下降。我们使用信息几何学和量子计量学的工具证明了双重任务的数据样本效率,因此首次将经典Fisher效率的开创性结果推广到变异量子算法。我们的方法扩展了以前样品有效的技术,以允许模型选择的灵活性,包括基于量子汉密尔顿的量子模型,包括基于量子的模型,这些模型可能会规避棘手的时间复杂性。我们的一阶算法是使用经典镜下降二元性的新型量子概括得出的。两种结果都需要特殊的度量选择,即Bogoliubov-Kubo-Mori度量。为了从数值上测试我们提出的算法,我们将它们的性能与现有基准进行了关于横向场ISING模型的量子Gibbs采样任务的现有基准。最后,我们提出了一种初始化策略,利用几何局部性来建模状态的序列(例如量子 - 故事过程)的序列。我们从经验上证明了它在实际和想象的时间演化的经验上,同时定义了更广泛的潜在应用。
translated by 谷歌翻译
我们引入了一种新型的数学公式,用于训练以(可能非平滑)近端图作为激活函数的馈送前向神经网络的培训。该公式基于布雷格曼的距离,关键优势是其相对于网络参数的部分导数不需要计算网络激活函数的导数。我们没有使用一阶优化方法和后传播的组合估算参数(如最先进的),而是建议使用非平滑一阶优化方法来利用特定结构新颖的表述。我们提出了几个数值结果,这些结果表明,与更常规的培训框架相比,这些训练方法可以很好地很好地适合于培训基于神经网络的分类器和具有稀疏编码的(DeNoising)自动编码器。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
本文介绍了一种新的数据驱动方法,利用由可逆神经网络产生的歧管嵌入,以提高具有有限数据的无组则无法模拟的鲁棒性,效率和准确性。我们通过培训深度神经网络来实现这一点,以将来自本组成歧管的全局映射到下一维欧几里德矢量空间。因此,我们建立了映射欧几里德矢量空间的规范与歧管的度量之间的关系,并导致更具物理上一致的材料数据距离概念。这种处理允许我们绕过昂贵的组合优化,当数据丰富并且高维时,这可能会显着加速无模型模拟。同时,当数据稀疏或在参数空间中不均匀地分布时,嵌入的学习还提高了算法的稳健性。提供了数值实验以证明和测量不同情况下歧管嵌入技术的性能。比较了从所提出的方法获得的结果和通过经典能量规范获得的结果。
translated by 谷歌翻译
近期在应用于培训深度神经网络和数据分析中的其他优化问题中的非凸优化的优化算法的兴趣增加,我们概述了最近对非凸优化优化算法的全球性能保证的理论结果。我们从古典参数开始,显示一般非凸面问题无法在合理的时间内有效地解决。然后,我们提供了一个问题列表,可以通过利用问题的结构来有效地找到全球最小化器,因为可能的问题。处理非凸性的另一种方法是放宽目标,从找到全局最小,以找到静止点或局部最小值。对于该设置,我们首先为确定性一阶方法的收敛速率提出了已知结果,然后是最佳随机和随机梯度方案的一般理论分析,以及随机第一阶方法的概述。之后,我们讨论了非常一般的非凸面问题,例如最小化$ \ alpha $ -weakly-are-convex功能和满足Polyak-lojasiewicz条件的功能,这仍然允许获得一阶的理论融合保证方法。然后,我们考虑更高阶和零序/衍生物的方法及其收敛速率,以获得非凸优化问题。
translated by 谷歌翻译
我们研究了仅当仅可用的嘈杂数据时,重建神经网络反问题的解决方案的问题。我们假设问题可以用无限可逆的无限前向操作员建模。然后,我们将该正向操作员限制为有限维空间,以使逆向Lipschitz连续。对于逆操作员,我们证明存在一个神经网络,该神经网络是操作员的健壮到噪声近似。此外,我们表明可以从适当的干扰培训数据中学到这些神经网络。我们证明了这种方法对实践感兴趣的各种反向问题的可接受性。给出了支持理论发现的数值示例。
translated by 谷歌翻译
我们研究了神经网络中平方损耗训练问题的优化景观和稳定性,但通用非线性圆锥近似方案。据证明,如果认为非线性圆锥近似方案是(以适当定义的意义)比经典线性近似方法更具表现力,并且如果存在不完美的标签向量,则在方位损耗的训练问题必须在其中不稳定感知其解决方案集在训练数据中的标签向量上不连续地取决于标签向量。我们进一步证明对这些不稳定属性负责的效果也是马鞍点出现的原因和杂散的局部最小值,这可能是从全球解决方案的任意遥远的,并且既不训练问题也不是训练问题的不稳定性通常,杂散局部最小值的存在可以通过向目标函数添加正则化术语来克服衡量近似方案中参数大小的目标函数。无论可实现的可实现性是否满足,后一种结果都被证明是正确的。我们表明,我们的分析特别适用于具有可变宽度的自由结插值方案和深层和浅层神经网络的培训问题,其涉及各种激活功能的任意混合(例如,二进制,六骨,Tanh,arctan,软标志, ISRU,Soft-Clip,SQNL,Relu,Lifley Relu,Soft-Plus,Bent Identity,Silu,Isrlu和ELU)。总之,本文的发现说明了神经网络和一般非线性圆锥近似仪器的改进近似特性以直接和可量化的方式与必须解决的优化问题的不期望的性质链接,以便训练它们。
translated by 谷歌翻译
人工神经网络(ANN)训练景观的非凸起带来了固有的优化困难。虽然传统的背传播随机梯度下降(SGD)算法及其变体在某些情况下是有效的,但它们可以陷入杂散的局部最小值,并且对初始化和普通公共表敏感。最近的工作表明,随着Relu激活的ANN的培训可以重新重整为凸面计划,使希望能够全局优化可解释的ANN。然而,天真地解决凸训练制剂具有指数复杂性,甚至近似启发式需要立方时间。在这项工作中,我们描述了这种近似的质量,并开发了两个有效的算法,这些算法通过全球收敛保证培训。第一算法基于乘法器(ADMM)的交替方向方法。它解决了精确的凸形配方和近似对应物。实现线性全局收敛,并且初始几次迭代通常会产生具有高预测精度的解决方案。求解近似配方时,每次迭代时间复杂度是二次的。基于“采样凸面”理论的第二种算法更简单地实现。它解决了不受约束的凸形制剂,并收敛到大约全球最佳的分类器。当考虑对抗性培训时,ANN训练景观的非凸起加剧了。我们将稳健的凸优化理论应用于凸训练,开发凸起的凸起制剂,培训Anns对抗对抗投入。我们的分析明确地关注一个隐藏层完全连接的ANN,但可以扩展到更复杂的体系结构。
translated by 谷歌翻译
本文探讨了一个问题:如何从数据中识别减少的订单模型。有三种将数据与模型联系起来的方法:不变叶,不变歧管和自动编码器。除非使用循环系统中的硬件,否则不变的歧管不能安装到数据中。自动编码器仅标识数据所在的相空间的一部分,这不一定是不变的歧管。因此,对于离线数据,唯一的选择是不变的叶面。我们注意到,Koopman本征函数也定义了不变的叶子,但是它们受到线性和产生的单一岩的假设的限制。寻找不变的叶面需要近似高维函数。我们提出了两种解决方案。如果寻求准确的降级模型,则使用稀疏的多项式近似,具有稀疏分层张量的多项式系数。如果寻求不变的歧管,作为叶的叶片,则可以通过低维多项式近似所需的高维函数。可以将这两种方法组合在一起以找到准确的减少订单模型和不变歧管。我们还分析了在机械系统中典型的焦点类型平衡的情况下,降低的订单模型。我们注意到,由不变叶叶定义的非线性坐标系和不变的歧管扭曲了瞬时频率和阻尼比,我们是正确的。通过示例,我们说明了不变叶和歧管的计算,同时表明,Koopman eigenfunctions和AutoCododer无法在相同条件下捕获准确的减少订单模型。
translated by 谷歌翻译
现代统计应用常常涉及最小化可能是非流动和/或非凸起的目标函数。本文侧重于广泛的Bregman-替代算法框架,包括本地线性近似,镜像下降,迭代阈值,DC编程以及许多其他实例。通过广义BREGMAN功能的重新发出使我们能够构建合适的误差测量并在可能高维度下建立非凸起和非凸起和非球形目标的全球收敛速率。对于稀疏的学习问题,在一些规律性条件下,所获得的估算器作为代理人的固定点,尽管不一定是局部最小化者,但享受可明确的统计保障,并且可以证明迭代顺序在所需的情况下接近统计事实准确地快速。本文还研究了如何通过仔细控制步骤和放松参数来设计基于适应性的动力的加速度而不假设凸性或平滑度。
translated by 谷歌翻译
深度学习(DL),尤其是深神经网络(DNN),默认情况下纯粹是数据驱动的,通常不需要物理。这是DL的优势,但在应用于科学和工程问题时,它的主要局限性之一就是必不可少的物理特性和所需的准确性。其原始形式的DL方法也无法尊重基本的数学模型或即使在大数据制度中也可以达到所需的准确性。但是,许多数据驱动的科学和工程问题(例如反问题)通常具有有限的实验或观察数据,而在这种情况下,DL会过分拟合数据。我们认为,利用基础数学模型中编码的信息,不仅可以补偿低数据制度中缺少的信息,而且还提供了将DL方法与基础物理学配备的机会,从而促进了更好的概括。本文开发了一种模型受限的深度学习方法及其变体TNET,该方法能够学习隐藏在培训数据和基础数学模型中的信息,以解决由部分微分方程控制的反问题。我们为提出的方法提供了构造和一些理论结果。我们表明,数据随机化可以增强网络的平滑度及其概括。全面的数值结果不仅确认了理论发现,而且还表明,即使仅20个训练数据样本,一维卷积的训练数据样本,50次反向2D热电导率问题,100和50对于时间依赖的2D汉堡方程和逆初始条件和50 2D Navier-Stokes方程。 TNET溶液可以像Tikhonov溶液一样准确,同时几个数量级。由于模型受限项,复制和随机化,这可能是可能的。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
对于光滑的强凸目标,梯度下降的经典理论可确保相对于梯度评估的数量的线性收敛。一个类似的非球形理论是具有挑战性的:即使目标在每一次迭代的目标流畅时,相应的本地模型也是不稳定的,传统的补救措施需要不可预测的许多切割平面。我们提出了对局部优化的梯度下降迭代的多点概括。虽然设计了一般目标,但我们受到“最大平滑”模型的动机,可在最佳状态下捕获子样本维度。当目标本身自象最大的情况时,我们证明了线性融合,并且实验表明了更普遍的现象。
translated by 谷歌翻译