合奏的基本分支混合合奏在许多机器学习问题,尤其是回归中蓬勃发展。几项研究证实了多样性的重要性。但是,以前的合奏仅考虑在子模型训练阶段的多样性,与单个模型相比,改进有限。相反,本研究从异质模型池中选择和权重子模型。它使用内点过滤线性搜索算法解决了优化问题。这种优化问题创新地将负相关学习作为惩罚项,可以选择多种模型子集。实验结果显示了一些有意义的观点。模型池构造需要不同类别的模型,每个类别都作为子模型为所有可能的参数集。选择每个类的最佳子模型以构建基于NCL的合奏,该集合比子模型的平均值要好得多。此外,与经典常数和非恒定加权方法相比,基于NCL的合奏在几种预测指标中具有重要优势。实际上,由于模型不确定性,很难在事先结论数据集的最佳子模型。但是,我们的方法将获得可比较的精度作为RMSE度量的潜在最佳子模型。总之,这项研究的价值在于它的易用性和有效性,使混合团合奏可以接受多样性和准确性。
translated by 谷歌翻译
天然气管道中的泄漏检测是石油和天然气行业的一个重要且持续的问题。这尤其重要,因为管道是运输天然气的最常见方法。这项研究旨在研究数据驱动的智能模型使用基本操作参数检测天然气管道的小泄漏的能力,然后使用现有的性能指标比较智能模型。该项目应用观察者设计技术,使用回归分类层次模型来检测天然气管道中的泄漏,其中智能模型充当回归器,并且修改后的逻辑回归模型充当分类器。该项目使用四个星期的管道数据流研究了五个智能模型(梯度提升,决策树,随机森林,支持向量机和人工神经网络)。结果表明,虽然支持向量机和人工神经网络比其他网络更好,但由于其内部复杂性和所使用的数据量,它们并未提供最佳的泄漏检测结果。随机森林和决策树模型是最敏感的,因为它们可以在大约2小时内检测到标称流量的0.1%的泄漏。所有智能模型在测试阶段中具有高可靠性,错误警报率为零。将所有智能模型泄漏检测的平均时间与文献中的实时短暂模型进行了比较。结果表明,智能模型在泄漏检测问题中的表现相对较好。该结果表明,可以与实时瞬态模型一起使用智能模型,以显着改善泄漏检测结果。
translated by 谷歌翻译
预测组合在预测社区中蓬勃发展,近年来,已经成为预测研究和活动主流的一部分。现在,由单个(目标)系列产生的多个预测组合通过整合来自不同来源收集的信息,从而提高准确性,从而减轻了识别单个“最佳”预测的风险。组合方案已从没有估计的简单组合方法演变为涉及时间变化的权重,非线性组合,组件之间的相关性和交叉学习的复杂方法。它们包括结合点预测和结合概率预测。本文提供了有关预测组合的广泛文献的最新评论,并参考可用的开源软件实施。我们讨论了各种方法的潜在和局限性,并突出了这些思想如何随着时间的推移而发展。还调查了有关预测组合实用性的一些重要问题。最后,我们以当前的研究差距和未来研究的潜在见解得出结论。
translated by 谷歌翻译
合奏学习结合了几个单独的模型,以获得更好的概括性能。目前,与浅层或传统模型相比,深度学习体系结构表现更好。深度合奏学习模型结合了深度学习模型以及整体学习的优势,使最终模型具有更好的概括性能。本文回顾了最先进的深度合奏模型,因此是研究人员的广泛摘要。合奏模型广泛地分类为包装,增强,堆叠,基于负相关的深度合奏模型,显式/隐式合奏,同质/异质合奏,基于决策融合策略的深层集合模型。还简要讨论了在不同领域中深层集成模型的应用。最后,我们以一些潜在的未来研究方向结束了本文。
translated by 谷歌翻译
近年来,随着传感器和智能设备的广泛传播,物联网(IoT)系统的数据生成速度已大大增加。在物联网系统中,必须经常处理,转换和分析大量数据,以实现各种物联网服务和功能。机器学习(ML)方法已显示出其物联网数据分析的能力。但是,将ML模型应用于物联网数据分析任务仍然面临许多困难和挑战,特别是有效的模型选择,设计/调整和更新,这给经验丰富的数据科学家带来了巨大的需求。此外,物联网数据的动态性质可能引入概念漂移问题,从而导致模型性能降解。为了减少人类的努力,自动化机器学习(AUTOML)已成为一个流行的领域,旨在自动选择,构建,调整和更新机器学习模型,以在指定任务上实现最佳性能。在本文中,我们对Automl区域中模型选择,调整和更新过程中的现有方法进行了审查,以识别和总结将ML算法应用于IoT数据分析的每个步骤的最佳解决方案。为了证明我们的发现并帮助工业用户和研究人员更好地实施汽车方法,在这项工作中提出了将汽车应用于IoT异常检测问题的案例研究。最后,我们讨论并分类了该领域的挑战和研究方向。
translated by 谷歌翻译
只要可以预见的是测试代码的固有特征,可以大大降低测试的高成本。本文提供了一种机器学习模型,以预测测试可以在多大程度上覆盖一个名为Coverabeality的新指标。预测模型由四个回归模型的集合组成。学习样本由特征向量组成,其中特征是为类计算的源代码指标。样品由针对其相应类计算的覆盖率值标记。我们提供了一个数学模型,以评估每个班级自动生成的测试套件的尺寸和覆盖范围的测试效果。我们通过引入一种新方法来根据现有源代码指标来定义子计量数来扩展功能空间的大小。使用功能重要性分析在学习的预测模型上,我们按照对测试效果的影响顺序对源代码指标进行排序。结果,我们发现类别严格的循环复杂性是最有影响力的源代码度量。我们对包含大约23,000个类的大型Java项目的预测模型进行的实验表明,平均绝对误差(MAE)为0.032,平均平方误差(MSE)为0.004,R2得分为0.855。与最先进的覆盖范围预测模型相比,我们的模型分别提高了MAE,MSE和R2得分5.78%,2.84%和20.71%。
translated by 谷歌翻译
本文介绍了一个集成预测方法,通过减少特征和模型选择假设来显示M4Competitiation数据集的强劲结果,称为甜甜圈(不利用人为假设)。我们的假设减少,主要由自动生成的功能和更多样化的集合模型组成,显着优于Montero-Manso等人的统计特征的集合方法FForma。 (2020)。此外,我们用长短期内存网络(LSTM)AutoEncoder调查特征提取,并发现此类特征包含传统统计特征方法未捕获的重要信息。合奏加权模型使用LSTM功能和统计功能准确地结合模型。特征重要性和交互的分析表明,单独的统计数据的LSTM特征略有优势。聚类分析表明,不同的基本LSTM功能与大多数统计特征不同。我们还发现,通过使用新模型增强合奏来增加加权模型的解决方案空间是加权模型学习使用的东西,解释了准确性的一部分。最后,我们为集合的最佳组合和选择提供了正式的前后事实分析,通过M4数据集的线性优化量化差异。我们还包括一个简短的证据,模型组合优于模型选择,后者。
translated by 谷歌翻译
多种统计和机器学习方法用于使用机器学习方法在特定道路上建模崩溃频率,通常具有更高的预测准确性。最近,包括堆叠在内的异质集合方法(HEM)已成为更准确和强大的智能技术,并且通常通过提供更可靠和准确的预测来解决模式识别问题。在这项研究中,我们将堆叠的关键下摆方法之一应用于城市和郊区动脉的五个车道段(5T)上的崩溃频率。将堆叠的预测性能与参数统计模型(泊松和负二项式)和三种最先进的机器学习技术(决策树,随机森林和梯度增强)进行了比较,每种技术都被称为基础学习者。通过采用最佳的体重方案通过堆叠结合单个基础学习者,由于规格和预测准确性的差异,各个基础学习者中有偏见的预测问题可以避免。从2013年到2017年收集并集成了包括崩溃,流量和道路清单在内的数据。数据分为培训,验证和测试数据集。统计模型的估计结果表明,除其他因素外,崩溃随着不同类型的车道的密度(每英里数)的增加而增加。各种模型的样本外预测的比较证实了堆叠优于所考虑的替代方法的优越性。从实际的角度来看,堆叠可以提高预测准确性(与仅使用具有特定规范的基本学习者相比)。当系统地应用时,堆叠可以帮助确定更合适的对策。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
本文描述了基于RRMSE(相对均方根误差)的权重,以在平均集合投票回归之前的预测值发生。整体回归背后的核心思想是结合几个基本回归模型,以通过数字连续目标变量来提高学习问题的预测性能。合奏投票回归的默认权重设置是统一权重,没有学习任务的领域知识,为预测分配权重是不可能的,这使得很难改善预测。这项工作试图通过实施基于RRMSE的加权函数来改善投票回归的预测。实验表明,与六个流行的回归学习数据集上的其他最先进的合奏回归算法相比,RRMSE投票回归器的预测能够更好地预测。
translated by 谷歌翻译
血浆定义为物质的第四个状态,在高电场下可以在大气压下产生非热血浆。现在众所周知,血浆激活液体(PAL)的强和广谱抗菌作用。机器学习(ML)在医疗领域的可靠适用性也鼓励其在等离子体医学领域的应用。因此,在PALS上的ML应用可以提出一种新的观点,以更好地了解各种参数对其抗菌作用的影响。在本文中,通过使用先前获得的数据来定性预测PAL的体外抗菌活性,从而介绍了比较监督的ML模型。进行了文献搜索,并从33个相关文章中收集了数据。在所需的预处理步骤之后,将两种监督的ML方法(即分类和回归)应用于数据以获得微生物灭活(MI)预测。对于分类,MI分为四类,对于回归,MI被用作连续变量。为分类和回归模型进行了两种不同的可靠交叉验证策略,以评估所提出的方法。重复分层的K折交叉验证和K折交叉验证。我们还研究了不同特征对模型的影响。结果表明,高参数优化的随机森林分类器(ORFC)和随机森林回归者(ORFR)分别比其他模型进行了分类和回归的模型更好。最后,获得ORFC的最佳测试精度为82.68%,ORFR的R2为0.75。 ML技术可能有助于更好地理解在所需的抗菌作用中具有主要作用的血浆参数。此外,此类发现可能有助于将来的血浆剂量定义。
translated by 谷歌翻译
软件测试可能是一个漫长且昂贵的过程,尤其是如果无法测试的软件进行测试。重构技术可以通过改善影响可检验性的软件指标来增强可检验性。在构建回归模型学习如何将计算的源代码计算指标与其可检验性相关联的指标时,确定了指标。我们确定了15个软件指标,在解释我们的可检测性预测模型的同时,高度影响可检验性。我们使用42个Java类的实验表明,除了改善其他一些质量属性外,改善这15个指标的重构平均可以提高可测试性15.57%。我们的可测试性预测模型经过训练,可以映射源代码指标,以测试有效性和效率,作为可测试软件的两种重要成分。随着测试套件获得的覆盖范围的增加,测试有效性会提高。另一方面,随着测试套件的大小增加,测试效率会降低。本文提供了一个数学模型,以根据测试套件的大小和覆盖范围来计算类可检验性。我们使用此数学模型来计算可测试性作为我们可检测性预测模型的目标。数学模型要求执行正在测试的类以计算测试覆盖范围,而我们的回归模型在静态上测量了测试性。在测试性方面的测试结果预测应在测试之前,以避免不必要的成本。我们的可测试性预测模型已在23,886个Java类和262个软件指标上进行了培训和测试。学习的模型以R2为0.68,平均平方误差为0.03,可预测可验证性。
translated by 谷歌翻译
通常向用户提出自动模型选择,以选择用于应用给定回归任务的机器学习模型(或方法)。在本文中,我们表明,组合不同的回归模型比选择单个(“最佳”)回归模型可以产生更好的结果,并概述了一种有效的方法,该方法从异质性回归模型集中获得最佳加权凸线性组合。更具体地说,在本文中,在上一篇论文中使用的启发式权重优化被使用凸二次编程的精确优化算法取代。我们证明了直接配方的二次编程公式和具有加权数据点的配方的凸度。新颖的重量优化不仅(更多)精确,而且更有效。我们在本文中开发的方法是通过github-open源实现和提供的。它们可以在常见的硬件上执行,并提供透明且易于解释的接口。结果表明,该方法在一系列数据集上的表现优于模型选择方法,包括来自药物发现应用程序的混合变量类型的数据集。
translated by 谷歌翻译
本文调查了股票回购,特别是分享回购公告。它解决了如何识别此类公告,股票回购的超额回报以及股票回购公告后的回报的预测。我们说明了两种NLP方法,用于自动检测股票回购公告。即使有少量的培训数据,我们也可以达到高达90%的准确性。该论文利用这些NLP方法生成一个由57,155个股票回购公告组成的大数据集。通过分析该数据集,本论文的目的是表明大多数宣布回购的公司的大多数公司都表现不佳。但是,少数公司的表现极大地超过了MSCI世界。当查看所有公司的平均值时,这种重要的表现过高会导致净收益。如果根据公司的规模调整了基准指数,则平均表现过高,并且大多数表现不佳。但是,发现宣布股票回购的公司至少占其市值的1%,即使使用调整后的基准,也平均交付了显着的表现。还发现,在危机时期宣布股票回购的公司比整个市场更好。此外,生成的数据集用于训练72个机器学习模型。通过此,它能够找到许多可以达到高达77%并产生大量超额回报的策略。可以在六个不同的时间范围内改善各种性能指标,并确定明显的表现。这是通过训练多个模型的不同任务和时间范围以及结合这些不同模型的方法来实现的,从而通过融合弱学习者来产生重大改进,以创造一个强大的学习者。
translated by 谷歌翻译
杂交和集合学习技术是改善预测方法的预测能力的流行模型融合技术。通过有限的研究,将这两种有前途的方法结合在一起,本文着重于不同合奏的基础模型池中指数平滑的旋转神经网络(ES-RNN)的实用性。我们将某些最先进的结合技术和算术模型平均作为基准进行比较。我们对M4预测数据集进行了100,000个时间序列,结果表明,基于特征的预测模型平均(FFORFORA)平均是与ES-RNN的晚期数据融合的最佳技术。但是,考虑到M4的每日数据子集,堆叠是处理所有基本模型性能相似的情况下唯一成功的合奏。我们的实验结果表明,与N-Beats作为基准相比,我们达到了艺术的预测结果。我们得出的结论是,模型平均比模型选择和堆叠策略更强大。此外,结果表明,提高梯度对于实施合奏学习策略是优越的。
translated by 谷歌翻译
预测基金绩效对投资者和基金经理都是有益的,但这是一项艰巨的任务。在本文中,我们测试了深度学习模型是否比传统统计技术更准确地预测基金绩效。基金绩效通常通过Sharpe比率进行评估,该比例代表了风险调整的绩效,以确保基金之间有意义的可比性。我们根据每月收益率数据序列数据计算了年度夏普比率,该数据的时间序列数据为600多个投资于美国上市大型股票的开放式共同基金投资。我们发现,经过现代贝叶斯优化训练的长期短期记忆(LSTM)和封闭式复发单元(GRUS)深度学习方法比传统统计量相比,预测基金的Sharpe比率更高。结合了LSTM和GRU的预测的合奏方法,可以实现所有模型的最佳性能。有证据表明,深度学习和结合能提供有希望的解决方案,以应对基金绩效预测的挑战。
translated by 谷歌翻译
无论是在功能选择的领域还是可解释的AI领域,都有基于其重要性的“排名”功能的愿望。然后可以将这种功能重要的排名用于:(1)减少数据集大小或(2)解释机器学习模型。但是,在文献中,这种特征排名没有以系统的,一致的方式评估。许多论文都有不同的方式来争论哪些具有重要性排名最佳的特征。本文通过提出一种新的评估方法来填补这一空白。通过使用合成数据集,可以事先知道特征重要性得分,从而可以进行更系统的评估。为了促进使用新方法的大规模实验,在Python建造了一个名为FSEVAL的基准测定框架。该框架允许并行运行实验,并在HPC系统上的计算机上分布。通过与名为“权重和偏见”的在线平台集成,可以在实时仪表板上进行交互探索图表。该软件作为开源软件发布,并在PYPI平台上以包裹发行。该研究结束时,探索了一个这样的大规模实验,以在许多方面找到参与算法的优势和劣势。
translated by 谷歌翻译
我们提出了一种从一组输入输出对中学习的新算法。我们的算法专为输入变量和输出变量与输出变量之间的关系而呈现出跨预测器空间的异构行为的群体设计。该算法从生成子集开始,该子集集中在输入空间中的随机点。然后培训每个子集的本地预测器。然后,这些预测变量以一种新的方式组合以产生整体预测因子。由于其与堆叠回归的方法的相似,我们称之为“使用子集堆叠”或更少学习“。我们将测试性能与在多个数据集上的最先进的方法中进行比较。我们的比较表明,较少是一种竞争的监督学习方法。此外,我们观察到,在计算时间方面较少也有效,并且允许直接并行实现。
translated by 谷歌翻译
Dataset scaling, also known as normalization, is an essential preprocessing step in a machine learning pipeline. It is aimed at adjusting attributes scales in a way that they all vary within the same range. This transformation is known to improve the performance of classification models, but there are several scaling techniques to choose from, and this choice is not generally done carefully. In this paper, we execute a broad experiment comparing the impact of 5 scaling techniques on the performances of 20 classification algorithms among monolithic and ensemble models, applying them to 82 publicly available datasets with varying imbalance ratios. Results show that the choice of scaling technique matters for classification performance, and the performance difference between the best and the worst scaling technique is relevant and statistically significant in most cases. They also indicate that choosing an inadequate technique can be more detrimental to classification performance than not scaling the data at all. We also show how the performance variation of an ensemble model, considering different scaling techniques, tends to be dictated by that of its base model. Finally, we discuss the relationship between a model's sensitivity to the choice of scaling technique and its performance and provide insights into its applicability on different model deployment scenarios. Full results and source code for the experiments in this paper are available in a GitHub repository.\footnote{https://github.com/amorimlb/scaling\_matters}
translated by 谷歌翻译
解决现实数据科学问题的一个关键元素正在选择要使用的模型类型。通常建议使用表格数据的分类和回归问题的树集合模型(如XGBoost)。然而,最近已经提出了几种用于表格数据的深层学习模型,声称对某些用例倾斜XGBoost。本文探讨了这些深度模型是否应该是通过严格将新的深层模型与各种数据集上的XGBoost进行比较来推荐的表格数据。除了系统地比较他们的性能外,我们还考虑他们所需要的调谐和计算。我们的研究表明,XGBoost在数据集中优于这些深度模型,包括提出深层模型的论文中使用的数据集。我们还证明XGBoost需要更少的调整。在积极的一面,我们表明,深层模型和XGBoost的集合在这些数据集上仅仅比XGBoost更好。
translated by 谷歌翻译