This work proposes a framework developed to generalize Critical Heat Flux (CHF) detection classification models using an Unsupervised Image-to-Image (UI2I) translation model. The framework enables a typical classification model that was trained and tested on boiling images from domain A to predict boiling images coming from domain B that was never seen by the classification model. This is done by using the UI2I model to transform the domain B images to look like domain A images that the classification model is familiar with. Although CNN was used as the classification model and Fixed-Point GAN (FP-GAN) was used as the UI2I model, the framework is model agnostic. Meaning, that the framework can generalize any image classification model type, making it applicable to a variety of similar applications and not limited to the boiling crisis detection problem. It also means that the more the UI2I models advance, the better the performance of the framework.
translated by 谷歌翻译
在离岸部门以及科学界在水下行动方面的迅速发展,水下车辆变得更加复杂。值得注意的是,许多水下任务,包括对海底基础设施的评估,都是在自动水下车辆(AUV)的帮助下进行的。最近在人工智能(AI)方面取得了突破,尤其是深度学习(DL)模型和应用,这些模型和应用在各种领域都广泛使用,包括空中无人驾驶汽车,自动驾驶汽车导航和其他应用。但是,由于难以获得特定应用的水下数据集,它们在水下应用中并不普遍。从这个意义上讲,当前的研究利用DL领域的最新进步来构建从实验室环境中捕获的物品照片产生的定制数据集。通过将收集到的图像与包含水下环境的照片相结合,将生成的对抗网络(GAN)用于将实验室对象数据集转化为水下域。这些发现证明了创建这样的数据集的可行性,因为与现实世界的水下船体船体图像相比,所得图像与真实的水下环境非常相似。因此,水下环境的人工数据集可以克服因对实际水下图像的有限访问而引起的困难,并用于通过水下对象图像分类和检测来增强水下操作。
translated by 谷歌翻译
Deep domain adaptation has emerged as a new learning technique to address the lack of massive amounts of labeled data. Compared to conventional methods, which learn shared feature subspaces or reuse important source instances with shallow representations, deep domain adaptation methods leverage deep networks to learn more transferable representations by embedding domain adaptation in the pipeline of deep learning. There have been comprehensive surveys for shallow domain adaptation, but few timely reviews the emerging deep learning based methods. In this paper, we provide a comprehensive survey of deep domain adaptation methods for computer vision applications with four major contributions. First, we present a taxonomy of different deep domain adaptation scenarios according to the properties of data that define how two domains are diverged. Second, we summarize deep domain adaptation approaches into several categories based on training loss, and analyze and compare briefly the state-of-the-art methods under these categories. Third, we overview the computer vision applications that go beyond image classification, such as face recognition, semantic segmentation and object detection. Fourth, some potential deficiencies of current methods and several future directions are highlighted.
translated by 谷歌翻译
图像到图像翻译(I2I)是一个充满挑战的计算机视觉问题,用于多个任务的众多域。最近,眼科成为I2i的应用迅速增加的主要领域之一。一种这样的应用是合成视网膜光学相干断层(OCT)扫描的产生。现有的I2I方法需要培训多种模型,将图像从正常扫描转换为特定病理学:限制由于它们的复杂性而对这些模型的使用。要解决此问题,我们提出了一个无监督的多域I2I网络,具有预先培训的样式编码器,可将一个域中的视网膜OCT图像转换为多个域。我们假设图像分裂到域不变内容和域特定的样式代码,并预先培训这些样式代码。所执行的实验表明,所提出的模型优于Munit和Cyclangan合成不同的病理扫描等最先进的模型。
translated by 谷歌翻译
生成的对抗网络(GANS)最近引入了执行图像到图像翻译的有效方法。这些模型可以应用于图像到图像到图像转换中的各种域而不改变任何参数。在本文中,我们调查并分析了八个图像到图像生成的对策网络:PIX2PX,Cyclegan,Cogan,Stargan,Munit,Stargan2,Da-Gan,以及自我关注GaN。这些模型中的每一个都呈现了最先进的结果,并引入了构建图像到图像的新技术。除了对模型的调查外,我们还调查了他们接受培训的18个数据集,并在其上进行了评估的9个指标。最后,我们在常见的一组指标和数据集中呈现6种这些模型的受控实验的结果。结果混合并显示,在某些数据集,任务和指标上,某些型号优于其他型号。本文的最后一部分讨论了这些结果并建立了未来研究领域。由于研究人员继续创新新的图像到图像GAN,因此他们非常重要地了解现有方法,数据集和指标。本文提供了全面的概述和讨论,以帮助构建此基础。
translated by 谷歌翻译
卫星图像中的云的检测是遥感中的大数据的基本预处理任务。卷积神经网络(CNNS)在检测卫星图像中的云中大大提升了最先进的,但是现有的基于CNN的方法昂贵,因为它们需要大量具有昂贵的像素级云标签的训练图像。为了减轻这种成本,我们提出了针对云检测(FCD)的定点GaN,这是一种弱监督的方法。只有图像级标签训练,我们学习在清晰和阴天的图像之间的固定点转换,因此在翻译期间只影响云。这样做使我们的方法能够通过将卫星图像转换为清除并将阈值设置为两个图像之间的差异来预测像素级云标签。此外,我们提出了FCD +,在那里我们利用CNN的标签噪声稳健性来改进FCD的预测,从而进一步改进。我们展示了我们对Landsat-8生物群落云检测数据集的方法的有效性,在那里我们将性能接近与昂贵的像素级标签一起列车的现有全监督方法。通过微调我们的FCD +,只有1%的可用像素级标签,我们符合完全监督方法的性能。
translated by 谷歌翻译
Deep learning has produced state-of-the-art results for a variety of tasks. While such approaches for supervised learning have performed well, they assume that training and testing data are drawn from the same distribution, which may not always be the case. As a complement to this challenge, single-source unsupervised domain adaptation can handle situations where a network is trained on labeled data from a source domain and unlabeled data from a related but different target domain with the goal of performing well at test-time on the target domain. Many single-source and typically homogeneous unsupervised deep domain adaptation approaches have thus been developed, combining the powerful, hierarchical representations from deep learning with domain adaptation to reduce reliance on potentially-costly target data labels. This survey will compare these approaches by examining alternative methods, the unique and common elements, results, and theoretical insights. We follow this with a look at application areas and open research directions.
translated by 谷歌翻译
The success of deep learning is largely due to the availability of large amounts of training data that cover a wide range of examples of a particular concept or meaning. In the field of medicine, having a diverse set of training data on a particular disease can lead to the development of a model that is able to accurately predict the disease. However, despite the potential benefits, there have not been significant advances in image-based diagnosis due to a lack of high-quality annotated data. This article highlights the importance of using a data-centric approach to improve the quality of data representations, particularly in cases where the available data is limited. To address this "small-data" issue, we discuss four methods for generating and aggregating training data: data augmentation, transfer learning, federated learning, and GANs (generative adversarial networks). We also propose the use of knowledge-guided GANs to incorporate domain knowledge in the training data generation process. With the recent progress in large pre-trained language models, we believe it is possible to acquire high-quality knowledge that can be used to improve the effectiveness of knowledge-guided generative methods.
translated by 谷歌翻译
In this paper, we investigate a challenging unsupervised domain adaptation setting -unsupervised model adaptation. We aim to explore how to rely only on unlabeled target data to improve performance of an existing source prediction model on the target domain, since labeled source data may not be available in some real-world scenarios due to data privacy issues. For this purpose, we propose a new framework, which is referred to as collaborative class conditional generative adversarial net to bypass the dependence on the source data. Specifically, the prediction model is to be improved through generated target-style data, which provides more accurate guidance for the generator. As a result, the generator and the prediction model can collaborate with each other without source data. Furthermore, due to the lack of supervision from source data, we propose a weight constraint that encourages similarity to the source model. A clustering-based regularization is also introduced to produce more discriminative features in the target domain. Compared to conventional domain adaptation methods, our model achieves superior performance on multiple adaptation tasks with only unlabeled target data, which verifies its effectiveness in this challenging setting.
translated by 谷歌翻译
组织病理学分析是对癌前病变诊断的本金标准。从数字图像自动组织病理学分类的目标需要监督培训,这需要大量的专家注释,这可能是昂贵且耗时的收集。同时,精确分类从全幻灯片裁剪的图像斑块对于基于标准滑动窗口的组织病理学幻灯片分类方法是必不可少的。为了减轻这些问题,我们提出了一个精心设计的条件GaN模型,即hostogan,用于在类标签上合成现实组织病理学图像补丁。我们还研究了一种新颖的合成增强框架,可选择地添加由我们提出的HADOGAN生成的新的合成图像补丁,而不是直接扩展与合成图像的训练集。通过基于其指定标签的置信度和实际标记图像的特征相似性选择合成图像,我们的框架为合成增强提供了质量保证。我们的模型在两个数据集上进行评估:具有有限注释的宫颈组织病理学图像数据集,以及具有转移性癌症的淋巴结组织病理学图像的另一个数据集。在这里,我们表明利用具有选择性增强的组织产生的图像导致对宫颈组织病理学和转移性癌症数据集分别的分类性能(分别为6.7%和2.8%)的显着和一致性。
translated by 谷歌翻译
Domain adaptation is critical for success in new, unseen environments. Adversarial adaptation models applied in feature spaces discover domain invariant representations, but are difficult to visualize and sometimes fail to capture pixel-level and low-level domain shifts. Recent work has shown that generative adversarial networks combined with cycle-consistency constraints are surprisingly effective at mapping images between domains, even without the use of aligned image pairs. We propose a novel discriminatively-trained Cycle-Consistent Adversarial Domain Adaptation model. CyCADA adapts representations at both the pixel-level and feature-level, enforces cycle-consistency while leveraging a task loss, and does not require aligned pairs. Our model can be applied in a variety of visual recognition and prediction settings. We show new state-of-the-art results across multiple adaptation tasks, including digit classification and semantic segmentation of road scenes demonstrating transfer from synthetic to real world domains.
translated by 谷歌翻译
深度神经网络在人类分析中已经普遍存在,增强了应用的性能,例如生物识别识别,动作识别以及人重新识别。但是,此类网络的性能通过可用的培训数据缩放。在人类分析中,对大规模数据集的需求构成了严重的挑战,因为数据收集乏味,廉价,昂贵,并且必须遵守数据保护法。当前的研究研究了\ textit {合成数据}的生成,作为在现场收集真实数据的有效且具有隐私性的替代方案。这项调查介绍了基本定义和方法,在生成和采用合成数据进行人类分析时必不可少。我们进行了一项调查,总结了当前的最新方法以及使用合成数据的主要好处。我们还提供了公开可用的合成数据集和生成模型的概述。最后,我们讨论了该领域的局限性以及开放研究问题。这项调查旨在为人类分析领域的研究人员和从业人员提供。
translated by 谷歌翻译
Collecting well-annotated image datasets to train modern machine learning algorithms is prohibitively expensive for many tasks. An appealing alternative is to render synthetic data where ground-truth annotations are generated automatically. Unfortunately, models trained purely on rendered images often fail to generalize to real images. To address this shortcoming, prior work introduced unsupervised domain adaptation algorithms that attempt to map representations between the two domains or learn to extract features that are domain-invariant. In this work, we present a new approach that learns, in an unsupervised manner, a transformation in the pixel space from one domain to the other. Our generative adversarial network (GAN)-based model adapts source-domain images to appear as if drawn from the target domain. Our approach not only produces plausible samples, but also outperforms the state-of-the-art on a number of unsupervised domain adaptation scenarios by large margins. Finally, we demonstrate that the adaptation process generalizes to object classes unseen during training.
translated by 谷歌翻译
发生毁灭性事件后,数十年来仍然可以看到空袭的后果。未爆炸的军械(UXO)是对人类生活和环境的巨大危险。通过评估战时图像,专家可以推断出DUD的发生。当前的手动分析过程是昂贵且耗时的,因此使用深度学习可以自动检测炸弹陨石坑,是改善UXO处置过程的一种有希望的方法。但是,这些方法需要大量手动标记的培训数据。这项工作利用月球表面图像来利用域的适应性,以解决自动化炸弹火山口检测的问题,并在有限的训练数据的限制下深入学习。本文通过提供有限的训练数据和(2)的自动炸弹火山口检测的解决方案方法来促进学术和实践(1),并通过证明使用合成图像进行域适应的可用性和相关挑战。
translated by 谷歌翻译
域的适应性引起了极大的兴趣,因为标签是一项昂贵且容易出错的任务,尤其是当像素级在语义分段中需要标签时。因此,人们希望能够在数据丰富并且标签精确的合成域上训练神经网络。但是,这些模型通常在室外图像上表现不佳。为了减轻输入的变化,可以使用图像到图像的方法。然而,使用合成训练域桥接部署领域的标准图像到图像方法并不关注下游任务,而仅关注视觉检查级别。因此,我们在图像到图像域的适应方法中提出了gan的“任务意识”版本。借助少量标记的地面真实数据,我们将图像到图像翻译指导为更合适的输入图像,用于培训合成数据(合成域专家)的语义分割网络。这项工作的主要贡献是1)一种模块化半监督域适应方法,通过训练下游任务Aware Cycean,同时避免适应合成语义分割专家2)该方法适用于复杂的域适应任务3)通过使用从头开始网络进行较不偏见的域间隙分析。我们在分类任务以及语义细分方面评估我们的方法。我们的实验表明,我们的方法比仅使用70(10%)地面真实图像的分类任务中的准确性优于标准图像到图像方法 - 准确性的准确性7%。对于语义细分,我们可以在训练过程中仅使用14个地面真相图像,在均值评估数据集上,平均交叉点比联合的平均交叉点约4%至7%。
translated by 谷歌翻译
Objective: Accurate visual classification of bladder tissue during Trans-Urethral Resection of Bladder Tumor (TURBT) procedures is essential to improve early cancer diagnosis and treatment. During TURBT interventions, White Light Imaging (WLI) and Narrow Band Imaging (NBI) techniques are used for lesion detection. Each imaging technique provides diverse visual information that allows clinicians to identify and classify cancerous lesions. Computer vision methods that use both imaging techniques could improve endoscopic diagnosis. We address the challenge of tissue classification when annotations are available only in one domain, in our case WLI, and the endoscopic images correspond to an unpaired dataset, i.e. there is no exact equivalent for every image in both NBI and WLI domains. Method: We propose a semi-surprised Generative Adversarial Network (GAN)-based method composed of three main components: a teacher network trained on the labeled WLI data; a cycle-consistency GAN to perform unpaired image-to-image translation, and a multi-input student network. To ensure the quality of the synthetic images generated by the proposed GAN we perform a detailed quantitative, and qualitative analysis with the help of specialists. Conclusion: The overall average classification accuracy, precision, and recall obtained with the proposed method for tissue classification are 0.90, 0.88, and 0.89 respectively, while the same metrics obtained in the unlabeled domain (NBI) are 0.92, 0.64, and 0.94 respectively. The quality of the generated images is reliable enough to deceive specialists. Significance: This study shows the potential of using semi-supervised GAN-based classification to improve bladder tissue classification when annotations are limited in multi-domain data.
translated by 谷歌翻译
语义分割在广泛的计算机视觉应用中起着基本作用,提供了全球对图像​​的理解的关键信息。然而,最先进的模型依赖于大量的注释样本,其比在诸如图像分类的任务中获得更昂贵的昂贵的样本。由于未标记的数据替代地获得更便宜,因此无监督的域适应达到了语义分割社区的广泛成功并不令人惊讶。本调查致力于总结这一令人难以置信的快速增长的领域的五年,这包含了语义细分本身的重要性,以及将分段模型适应新环境的关键需求。我们提出了最重要的语义分割方法;我们对语义分割的域适应技术提供了全面的调查;我们揭示了多域学习,域泛化,测试时间适应或无源域适应等较新的趋势;我们通过描述在语义细分研究中最广泛使用的数据集和基准测试来结束本调查。我们希望本调查将在学术界和工业中提供具有全面参考指导的研究人员,并有助于他们培养现场的新研究方向。
translated by 谷歌翻译
Person re-identification (re-ID) models trained on one domain often fail to generalize well to another. In our attempt, we present a "learning via translation" framework. In the baseline, we translate the labeled images from source to target domain in an unsupervised manner. We then train re-ID models with the translated images by supervised methods. Yet, being an essential part of this framework, unsupervised image-image translation suffers from the information loss of source-domain labels during translation.Our motivation is two-fold. First, for each image, the discriminative cues contained in its ID label should be maintained after translation. Second, given the fact that two domains have entirely different persons, a translated image should be dissimilar to any of the target IDs. To this end, we propose to preserve two types of unsupervised similarities, 1) self-similarity of an image before and after translation, and 2) domain-dissimilarity of a translated source image and a target image. Both constraints are implemented in the similarity preserving generative adversarial network (SPGAN) which consists of an Siamese network and a Cy-cleGAN. Through domain adaptation experiment, we show that images generated by SPGAN are more suitable for domain adaptation and yield consistent and competitive re-ID accuracy on two large-scale datasets.
translated by 谷歌翻译
最近的智能故障诊断(IFD)的进展大大依赖于深度代表学习和大量标记数据。然而,机器通常以各种工作条件操作,或者目标任务具有不同的分布,其中包含用于训练的收集数据(域移位问题)。此外,目标域中的新收集的测试数据通常是未标记的,导致基于无监督的深度转移学习(基于UDTL为基础的)IFD问题。虽然它已经实现了巨大的发展,但标准和开放的源代码框架以及基于UDTL的IFD的比较研究尚未建立。在本文中,我们根据不同的任务,构建新的分类系统并对基于UDTL的IFD进行全面审查。对一些典型方法和数据集的比较分析显示了基于UDTL的IFD中的一些开放和基本问题,这很少研究,包括特征,骨干,负转移,物理前导等的可转移性,强调UDTL的重要性和再现性 - 基于IFD,整个测试框架将发布给研究界以促进未来的研究。总之,发布的框架和比较研究可以作为扩展界面和基本结果,以便对基于UDTL的IFD进行新的研究。代码框架可用于\ url {https:/github.com/zhaozhibin/udtl}。
translated by 谷歌翻译
Process monitoring and control are essential in modern industries for ensuring high quality standards and optimizing production performance. These technologies have a long history of application in production and have had numerous positive impacts, but also hold great potential when integrated with Industry 4.0 and advanced machine learning, particularly deep learning, solutions. However, in order to implement these solutions in production and enable widespread adoption, the scalability and transferability of deep learning methods have become a focus of research. While transfer learning has proven successful in many cases, particularly with computer vision and homogenous data inputs, it can be challenging to apply to heterogeneous data. Motivated by the need to transfer and standardize established processes to different, non-identical environments and by the challenge of adapting to heterogeneous data representations, this work introduces the Domain Adaptation Neural Network with Cyclic Supervision (DBACS) approach. DBACS addresses the issue of model generalization through domain adaptation, specifically for heterogeneous data, and enables the transfer and scalability of deep learning-based statistical control methods in a general manner. Additionally, the cyclic interactions between the different parts of the model enable DBACS to not only adapt to the domains, but also match them. To the best of our knowledge, DBACS is the first deep learning approach to combine adaptation and matching for heterogeneous data settings. For comparison, this work also includes subspace alignment and a multi-view learning that deals with heterogeneous representations by mapping data into correlated latent feature spaces. Finally, DBACS with its ability to adapt and match, is applied to a virtual metrology use case for an etching process run on different machine types in semiconductor manufacturing.
translated by 谷歌翻译