机器学习(ML)的指数增长引起了极大的兴趣,以量化用户定义的信心水平的每个预测的不确定性。可靠的不确定性定量至关重要,是迈向增加对AI结果的信任的一步。在高风险决策中,它变得尤为重要,在这种决策中,真正的输出必须在置信度范围内具有很高的可能性。共形预测(CP)是一个无分布的不确定性定量框架,可适用于任何黑框模型,并产生预测间隔(PI),这些预测间隔(PIS)在轻度的交换性假设下有效。 CP型方法由于易于实施和计算便宜而变得越来越流行;但是,交换性假设立即排除时间序列预测。尽管最近的论文解决了协变量的转变,但对于一般时间序列预测生产H-Step提前有效PI的问题还不足。为了实现这样的目标,我们提出了一种称为AENBMIMOCQR的新方法(自适应集合批量多输入多输出保形的分数回归),该方法会产生渐近有效的PIS,适合异质驱动时间序列。我们将提出的方法与NN5预测竞争数据集中的最新竞争方法进行比较。所有用于复制实验的代码和数据都可以使用
translated by 谷歌翻译
机器学习方法越来越广泛地用于医疗保健,运输和金融等高危环境中。在这些环境中,重要的是,模型要产生校准的不确定性以反映其自信并避免失败。在本文中,我们调查了有关深度学习的不确定性定量(UQ)的最新著作,特别是针对其数学属性和广泛适用性的无分配保形方法。我们将涵盖共形方法的理论保证,引入在时空数据的背景下提高UQ的校准和效率的技术,并讨论UQ在安全决策中的作用。
translated by 谷歌翻译
共形分位回归是一种继承保形预测和分数回归的优势的程序。也就是说,我们使用分位数回归来估计真正的条件分位数,然后在校准集中应用一个共形步骤以确保边缘覆盖率。通过这种方式,我们获得了解释异质性的自适应预测间隔。然而,如(Romano等,2019)所述,上述形式缺乏适应性。为了克服这一限制,我们建议在估计有条件的分位数后使用分位数回归后应用单个共形步骤,而是建议将解释变量通过优化的k均值加权的解释变量聚集,并应用k的共形步骤。为了证明此改进的版本优于共形分位数回归的经典版本,并且更适合异方差,我们可以广泛比较开放数据集中两者的预测间隔。
translated by 谷歌翻译
This paper presents a novel probabilistic forecasting method called ensemble conformalized quantile regression (EnCQR). EnCQR constructs distribution-free and approximately marginally valid prediction intervals (PIs), which are suitable for nonstationary and heteroscedastic time series data. EnCQR can be applied on top of a generic forecasting model, including deep learning architectures. EnCQR exploits a bootstrap ensemble estimator, which enables the use of conformal predictors for time series by removing the requirement of data exchangeability. The ensemble learners are implemented as generic machine learning algorithms performing quantile regression, which allow the length of the PIs to adapt to local variability in the data. In the experiments, we predict time series characterized by a different amount of heteroscedasticity. The results demonstrate that EnCQR outperforms models based only on quantile regression or conformal prediction, and it provides sharper, more informative, and valid PIs.
translated by 谷歌翻译
Accurate uncertainty measurement is a key step to building robust and reliable machine learning systems. Conformal prediction is a distribution-free uncertainty quantification algorithm popular for its ease of implementation, statistical coverage guarantees, and versatility for underlying forecasters. However, existing conformal prediction algorithms for time series are limited to single-step prediction without considering the temporal dependency. In this paper we propose a Copula Conformal Prediction algorithm for multivariate, multi-step Time Series forecasting, CopulaCPTS. On several synthetic and real-world multivariate time series datasets, we show that CopulaCPTS produces more calibrated and sharp confidence intervals for multi-step prediction tasks than existing techniques.
translated by 谷歌翻译
We present a new distribution-free conformal prediction algorithm for sequential data (e.g., time series), called the \textit{sequential predictive conformal inference} (\texttt{SPCI}). We specifically account for the nature that the time series data are non-exchangeable, and thus many existing conformal prediction algorithms based on temporal residuals are not applicable. The main idea is to exploit the temporal dependence of conformity scores; thus, the past conformity scores contain information about future ones. Then we cast the problem of conformal prediction interval as predicting the quantile of a future residual, given a prediction algorithm. Theoretically, we establish asymptotic valid conditional coverage upon extending consistency analyses in quantile regression. Using simulation and real-data experiments, we demonstrate a significant reduction in interval width of \texttt{SPCI} compared to other existing methods under the desired empirical coverage.
translated by 谷歌翻译
在这项工作中,我们对基本思想和新颖的发展进行了综述的综述,这是基于最小的假设的一种无创新的,无分配的,非参数预测的方法 - 能够以非常简单的方式预测集屈服在有限样本案例中,在统计意义上也有效。论文中提供的深入讨论涵盖了共形预测的理论基础,然后继续列出原始想法的更高级的发展和改编。
translated by 谷歌翻译
共形预测(CP)是一种多功能的非参数框架,用于量化预测问题中的不确定性。在这项工作中,我们通过首次提出可以应用于时间不断发展的表面,将这种方法扩展到在双变量域上定义的时间序列函数的情况。为了获得有意义有效的预测区域,CP必须与准确的预测算法结合使用,因此,我们扩展了希尔伯特空间中自回旋过程的理论理论,以允许具有双变量域的功能。考虑到该主题的新颖性,我们提出了功能自回旋模型(FAR)的估计技术。实施了仿真研究,以研究不同的点预测因子如何影响所得的预测频段。最后,我们探索了真正数据集中拟议方法的利益和限制,在过去的二十年中,每天都会观察到黑海的海平面异常。
translated by 谷歌翻译
在过去几十年中,已经提出了各种方法,用于估计回归设置中的预测间隔,包括贝叶斯方法,集合方法,直接间隔估计方法和保形预测方法。重要问题是这些方法的校准:生成的预测间隔应该具有预定义的覆盖水平,而不会过于保守。在这项工作中,我们从概念和实验的角度审查上述四类方法。结果来自各个域的基准数据集突出显示从一个数据集中的性能的大波动。这些观察可能归因于违反某些类别的某些方法所固有的某些假设。我们说明了如何将共形预测用作提供不具有校准步骤的方法的方法的一般校准程序。
translated by 谷歌翻译
在这项工作中,我们提出了使用量子缩放(MQ-DRN-S)的分位数回归和扩张的经常性神经网络,并将其应用于库存管理任务。该模型在统计基准(具有外源性变量,QAR-X)的统计基准(分位式自回归模型,QAR-X)而言,该模型更好地表现出更好的性能,而不是在没有时间缩放的MQ-DRNN的情况下更好。以上一系列10,000次销售的elllobo销售超过53周的地平线,每周使用滚动窗口为7天。
translated by 谷歌翻译
基于预测方法的深度学习已成为时间序列预测或预测的许多应用中的首选方法,通常通常优于其他方法。因此,在过去的几年中,这些方法现在在大规模的工业预测应用中无处不在,并且一直在预测竞赛(例如M4和M5)中排名最佳。这种实践上的成功进一步提高了学术兴趣,以理解和改善深厚的预测方法。在本文中,我们提供了该领域的介绍和概述:我们为深入预测的重要构建块提出了一定深度的深入预测;随后,我们使用这些构建块,调查了最近的深度预测文献的广度。
translated by 谷歌翻译
预测组合在预测社区中蓬勃发展,近年来,已经成为预测研究和活动主流的一部分。现在,由单个(目标)系列产生的多个预测组合通过整合来自不同来源收集的信息,从而提高准确性,从而减轻了识别单个“最佳”预测的风险。组合方案已从没有估计的简单组合方法演变为涉及时间变化的权重,非线性组合,组件之间的相关性和交叉学习的复杂方法。它们包括结合点预测和结合概率预测。本文提供了有关预测组合的广泛文献的最新评论,并参考可用的开源软件实施。我们讨论了各种方法的潜在和局限性,并突出了这些思想如何随着时间的推移而发展。还调查了有关预测组合实用性的一些重要问题。最后,我们以当前的研究差距和未来研究的潜在见解得出结论。
translated by 谷歌翻译
The main objective of Prognostics and Health Management is to estimate the Remaining Useful Lifetime (RUL), namely, the time that a system or a piece of equipment is still in working order before starting to function incorrectly. In recent years, numerous machine learning algorithms have been proposed for RUL estimation, mainly focusing on providing more accurate RUL predictions. However, there are many sources of uncertainty in the problem, such as inherent randomness of systems failure, lack of knowledge regarding their future states, and inaccuracy of the underlying predictive models, making it infeasible to predict the RULs precisely. Hence, it is of utmost importance to quantify the uncertainty alongside the RUL predictions. In this work, we investigate the conformal prediction (CP) framework that represents uncertainty by predicting sets of possible values for the target variable (intervals in the case of RUL) instead of making point predictions. Under very mild technical assumptions, CP formally guarantees that the actual value (true RUL) is covered by the predicted set with a degree of certainty that can be prespecified. We study three CP algorithms to conformalize any single-point RUL predictor and turn it into a valid interval predictor. Finally, we conformalize two single-point RUL predictors, deep convolutional neural networks and gradient boosting, and illustrate their performance on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) data sets.
translated by 谷歌翻译
我们开发了一个框架,用于在线环境中使用有效的覆盖范围保证构建不确定性集,其中基础数据分布可以急剧(甚至对手)随着时间的推移而发生巨大变化。我们提出的技术非常灵活,因为它可以与任何在线学习算法集成,需要最低限度的实施工作和计算成本。我们方法比现有替代方案的关键优势(也基于共形推断)是我们不需要将数据分为培训和保持校准集。这使我们能够以完全在线的方式拟合预测模型,并利用最新的观察结果来构建校准的不确定性集。因此,与现有技术相反,(i)我们构建的集合可以迅速适应分布的新变化; (ii)我们的过程不需要在每个时间步骤进行改装。使用合成和现实世界的基准数据集,我们证明了理论的有效性以及提案对现有技术的提高绩效。为了证明所提出的方法的更大灵活性,我们展示了如何为多出输出回归问题构造有效的间隔,而以前的顺序校准方法由于不切实际的计算和内存需求而无法处理。
translated by 谷歌翻译
共形推断是一种灵活的方法,用于将任何黑框模型(例如神经网,随机森林)的预测转换为有效的预测集。唯一必要的假设是可以交换培训和测试数据(例如I.I.D.)。不幸的是,这种假设通常在在线环境中是不现实的,在线环境中,生成数据的处理可能会随着时间而变化,并且连续数据点通常在时间上相关。在本文中,我们开发了一种在线算法,用于生成对这些偏差的预测间隔。我们的方法基于共形推断,因此可以与任何黑盒预测因子结合使用。我们表明,我们算法的覆盖误差受环境中基础变化的大小控制,因此直接将分布移位的大小与预测问题的难度联系起来。最后,我们将过程应用于两个现实世界的设置,发现我们的方法在现实世界动态下产生了强大的预测间隔。
translated by 谷歌翻译
现在通常用于高风险设置,如医疗诊断,如医疗诊断,那么需要不确定量化,以避免后续模型失败。无分发的不确定性量化(无分布UQ)是用户友好的范式,用于为这种预测创建统计上严格的置信区间/集合。批判性地,间隔/集合有效而不进行分布假设或模型假设,即使具有最多许多DataPoints也具有显式保证。此外,它们适应输入的难度;当输入示例很困难时,不确定性间隔/集很大,信号传达模型可能是错误的。在没有多大的工作和没有再培训的情况下,可以在任何潜在的算法(例如神经网络)上使用无分​​发方法,以产生置信度集,以便包含用户指定概率,例如90%。实际上,这些方法易于理解和一般,应用于计算机视觉,自然语言处理,深度加强学习等领域出现的许多现代预测问题。这种实践介绍是针对对无需统计学家的免费UQ的实际实施感兴趣的读者。我们通过实际的理论和无分发UQ的应用领导读者,从保形预测开始,并使无关的任何风险的分布控制,如虚假发现率,假阳性分布检测,等等。我们将包括Python中的许多解释性插图,示例和代码样本,具有Pytorch语法。目标是提供读者对无分配UQ的工作理解,使它们能够将置信间隔放在算法上,其中包含一个自包含的文档。
translated by 谷歌翻译
我们提出了一种利用分布人工神经网络的概率电价预测(EPF)的新方法。EPF的新型网络结构基于包含概率层的正则分布多层感知器(DMLP)。使用TensorFlow概率框架,神经网络的输出被定义为一个分布,是正常或可能偏斜且重尾的Johnson的SU(JSU)。在预测研究中,将该方法与最新基准进行了比较。该研究包括预测,涉及德国市场的日常电价。结果显示了对电价建模时较高时刻的重要性的证据。
translated by 谷歌翻译
当构建回归的预测间隔(具有实值响应)或分类的预测集(具有分类响应)时,不确定性量化对于研究复杂的机器学习方法至关重要。在本文中,我们基于[Xu and Xie,2021]的先前工作,开发了集合正规化的自适应预测集(ERAP),以构建时间序列(具有分类响应)的预测集(具有分类响应)。特别是,我们允许未知的依赖性存在于顺序到达的功能和响应中。在方法论方面,ERAPS是一种不含分发和合奏的框架,适用于任意分类器。从理论上讲,我们在不假设数据交换性的情况下绑定了覆盖差距并显示渐近集收敛。从经验上讲,我们通过ERAP证明了有效的边际和条件覆盖范围,而与竞争方法相比,这也倾向于产生更小的预测集。
translated by 谷歌翻译
估计与机器学习预测(ML)模型相关的不确定性对于评估其稳健性和预测能力至关重要。在此提交中,我们介绍了Mapie(模型不可知的预测间隔估计器),这是一个开源Python库,可量化单输出回归和多类分类任务的ML模型的不确定性。Mapie实施了保形预测方法,使用户可以轻松地计算出在边际覆盖范围上具有强大理论保证的不确定性,并在模型或基础数据分布上进行了轻微的假设。Mapie托管在Scikit-Learn-Contrib上,完全“ Scikit-Learn兼容”。因此,它接受带有Scikit-Learn API的任何类型的回归器或分类器。该库可在以下网址获得:https://github.com/scikit-learn-contrib/mapie/。
translated by 谷歌翻译
定量回归是一种有效的技术,可以量化不确定性,符合挑战的潜在分布,并且通常通过在多个分位数水平上的联合学习提供完全概率预测。然而,这些关节分位数回归的常见缺点是\ textit {stantile交叉},其违反了条件分位式函数的理想单调属性。在这项工作中,我们提出了增量(样条曲线)量子函数I(S)QF,灵活和有效的无分布定量位估计框架,其解决了与简单的神经网络层的定量交叉。此外,I(s)QF Inter /外推预测与底层训练不同的任意定量水平。配备了对I(S)QF表示的连续排名概率得分的分析评估,我们将方法应用于基于NN的时间系列预测案例,其中尤其是昂达训练的分位数的昂贵重新培训成本的节省重大。我们还提供了在序列到序列设置下我们提出的方法的泛化误差分析。最后,广泛的实验证明了在其他基线上提高了一致性和准确性误差。
translated by 谷歌翻译