存储数十万个材料结构及其相应特性的开放材料数据库已成为现代计算材料科学的基石。然而,模拟的原始输出,例如分子动力学模拟的轨迹和密度功能理论计算的电荷密度,通常由于其较大的尺寸而没有共享。在这项工作中,我们描述了一个基于云的平台,以促进原始数据的共享,并在云中启用快速的后处理以提取用户定义的新属性。作为初始演示,我们的数据库目前包括6286个用于无定形聚合物电解质的分子动力学轨迹和5.7吨数据库。我们在https://github.com/tri-amdd/htp_md上创建一个公共分析库,使用专家设计的功能和机器学习模型,从原始数据中提取多个属性。该分析是通过云中的计算自动运行的,然后结果填充可以公开访问的数据库。我们的平台鼓励用户通过公共接口贡献新的轨迹数据和分析功能。新分析的属性将纳入数据库。最后,我们在https://www.htpmd.matr.io上创建了一个前端用户界面,以浏览和可视化数据。我们设想该平台将是一种为计算材料科学界共享原始数据和新见解的新方法。
translated by 谷歌翻译
研究过程自动化 - 对科学仪器,计算机,数据存储和其他资源的可靠,高效和可重复执行的可靠,高效和可重复执行,这是现代科学的基本要素。我们在此处报告Globus研究数据管理平台内的新服务,该服务可以将各种研究过程的规范作为可重复使用的动作集,流量以及在异质研究环境中执行此类流动的集合。为了以广泛的空间范围(例如,从科学仪器到远程数据中心)和时间范围(从几秒钟到几周),这些Globus自动化服务功能:1)云托管以可靠地执行长期持久的流量,尽管零星的失败,但这些Globus自动化服务功能:1) ; 2)声明性符号和可扩展的异步行动提供商API,用于定义和执行涉及任意资源的各种行动和流动规范; 3)授权授权机制,用于安全调用动作。这些服务允许研究人员将广泛的研究任务的管理外包和自动化为可靠,可扩展和安全的云平台。我们向Globus自动化服务提供用例
translated by 谷歌翻译
SchNetPack is a versatile neural networks toolbox that addresses both the requirements of method development and application of atomistic machine learning. Version 2.0 comes with an improved data pipeline, modules for equivariant neural networks as well as a PyTorch implementation of molecular dynamics. An optional integration with PyTorch Lightning and the Hydra configuration framework powers a flexible command-line interface. This makes SchNetPack 2.0 easily extendable with custom code and ready for complex training task such as generation of 3d molecular structures.
translated by 谷歌翻译
Drug development is a wide scientific field that faces many challenges these days. Among them are extremely high development costs, long development times, as well as a low number of new drugs that are approved each year. To solve these problems, new and innovate technologies are needed that make the drug discovery process of small-molecules more time and cost-efficient, and which allow to target previously undruggable target classes such as protein-protein interactions. Structure-based virtual screenings have become a leading contender in this context. In this review, we give an introduction to the foundations of structure-based virtual screenings, and survey their progress in the past few years. We outline key principles, recent success stories, new methods, available software, and promising future research directions. Virtual screenings have an enormous potential for the development of new small-molecule drugs, and are already starting to transform early-stage drug discovery.
translated by 谷歌翻译
这项工作介绍了神经性等因素的外部潜力(NEQUIP),E(3) - 用于学习分子动力学模拟的AB-INITIO计算的用于学习网状体电位的e(3)的神经网络方法。虽然大多数当代对称的模型使用不变的卷曲,但仅在标量上采取行动,Nequip采用E(3) - 几何张量的相互作用,举起Quivariant卷曲,导致了更多的信息丰富和忠实的原子环境代表。该方法在挑战和多样化的分子和材料集中实现了最先进的准确性,同时表现出显着的数据效率。 Nequip优先于现有型号,最多三个数量级的培训数据,挑战深度神经网络需要大量培训套装。该方法的高数据效率允许使用高阶量子化学水平的理论作为参考的精确潜力构建,并且在长时间尺度上实现高保真分子动力学模拟。
translated by 谷歌翻译
Establishing open and general benchmarks has been a critical driving force behind the success of modern machine learning techniques. As machine learning is being applied to broader domains and tasks, there is a need to establish richer and more diverse benchmarks to better reflect the reality of the application scenarios. Graph learning is an emerging field of machine learning that urgently needs more and better benchmarks. To accommodate the need, we introduce Graph Learning Indexer (GLI), a benchmark curation platform for graph learning. In comparison to existing graph learning benchmark libraries, GLI highlights two novel design objectives. First, GLI is designed to incentivize \emph{dataset contributors}. In particular, we incorporate various measures to minimize the effort of contributing and maintaining a dataset, increase the usability of the contributed dataset, as well as encourage attributions to different contributors of the dataset. Second, GLI is designed to curate a knowledge base, instead of a plain collection, of benchmark datasets. We use multiple sources of meta information to augment the benchmark datasets with \emph{rich characteristics}, so that they can be easily selected and used in downstream research or development. The source code of GLI is available at \url{https://github.com/Graph-Learning-Benchmarks/gli}.
translated by 谷歌翻译
在整个计算科学中,越来越需要利用原始计算马力的持续改进,通过对蛮力的尺度锻炼的尺度增加,以增加网状元素数量的增加。例如,如果不考虑分子水平的相互作用,就不可能对纳米多孔介质的转运进行定量预测,即从紧密的页岩地层提取至关重要的碳氢化合物。同样,惯性限制融合模拟依赖于数值扩散来模拟分子效应,例如非本地转运和混合,而无需真正考虑分子相互作用。考虑到这两个不同的应用程序,我们开发了一种新颖的功能,该功能使用主动学习方法来优化局部细尺度模拟的使用来告知粗尺度流体动力学。我们的方法解决了三个挑战:预测连续性粗尺度轨迹,以推测执行新的精细分子动力学计算,动态地更新细度计算中的粗尺度,并量化神经网络模型中的不确定性。
translated by 谷歌翻译
计算催化和机器学习社区在开发用于催化剂发现和设计的机器学习模型方面取得了长足的进步。然而,跨越催化的化学空间的一般机器学习潜力仍然无法触及。一个重大障碍是在广泛的材料中获得访问培训数据的访问。缺乏数据的一类重要材料是氧化物,它抑制模型无法更广泛地研究氧气进化反应和氧化物电催化。为了解决这个问题,我们开发了开放的催化剂2022(OC22)数据集,包括62,521个密度功能理论(DFT)放松(〜9,884,504个单点计算),遍及一系列氧化物材料,覆盖范围,覆盖率和吸附物( *H, *o, *o, *o, *o, *o, * n, *c, *ooh, *oh, *oh2, *o2, *co)。我们定义广义任务,以预测催化过程中适用的总系统能量,发展几个图神经网络的基线性能(Schnet,Dimenet ++,Forcenet,Spinconv,Painn,Painn,Gemnet-DT,Gemnet-DT,Gemnet-OC),并提供预先定义的数据集分割以建立明确的基准,以实现未来的努力。对于所有任务,我们研究组合数据集是否会带来更好的结果,即使它们包含不同的材料或吸附物。具体而言,我们在Open Catalyst 2020(OC20)数据集和OC22上共同训练模型,或OC22上的微调OC20型号。在最一般的任务中,Gemnet-OC看到通过微调来提高了约32%的能量预测,通过联合训练的力预测提高了约9%。令人惊讶的是,OC20和较小的OC22数据集的联合培训也将OC20的总能量预测提高了约19%。数据集和基线模型是开源的,公众排行榜将遵循,以鼓励社区的持续发展,以了解总能源任务和数据。
translated by 谷歌翻译
Machine Learning for Source Code (ML4Code) is an active research field in which extensive experimentation is needed to discover how to best use source code's richly structured information. With this in mind, we introduce JEMMA, an Extensible Java Dataset for ML4Code Applications, which is a large-scale, diverse, and high-quality dataset targeted at ML4Code. Our goal with JEMMA is to lower the barrier to entry in ML4Code by providing the building blocks to experiment with source code models and tasks. JEMMA comes with a considerable amount of pre-processed information such as metadata, representations (e.g., code tokens, ASTs, graphs), and several properties (e.g., metrics, static analysis results) for 50,000 Java projects from the 50KC dataset, with over 1.2 million classes and over 8 million methods. JEMMA is also extensible allowing users to add new properties and representations to the dataset, and evaluate tasks on them. Thus, JEMMA becomes a workbench that researchers can use to experiment with novel representations and tasks operating on source code. To demonstrate the utility of the dataset, we also report results from two empirical studies on our data, ultimately showing that significant work lies ahead in the design of context-aware source code models that can reason over a broader network of source code entities in a software project, the very task that JEMMA is designed to help with.
translated by 谷歌翻译
传统的数据湖泊通过启用时间旅行,运行SQL查询,使用酸性交易摄入数据以及可视化PBABYTE尺度数据集在云存储中,为分析工作负载提供了关键的数据基础架构。它们使组织能够分解数据孤岛,解锁数据驱动的决策,提高运营效率并降低成本。但是,随着深度学习接管常见的分析工作流程,传统数据湖泊对诸如自然语言处理(NLP),音频处理,计算机视觉和涉及非尾巴数据集的应用程序的有用程度降低。本文介绍了Deep Lake,这是一个开源湖泊,用于在Activeloop开发的深度学习应用程序。 Deep Lake保持了一项关键区别的香草数据湖的好处:它以张量的形式存储复杂数据,例如图像,视频,注释以及表格数据,并将数据迅速流式传输到网络上(a )张量查询语言,(b)浏览器可视化引擎或(c)不牺牲GPU利用率的深度学习框架。可以从Pytorch,Tensorflow,Jax,与许多MLOPS工具集成在一起的数据集。
translated by 谷歌翻译
The findable, accessible, interoperable, and reusable (FAIR) data principles have provided a framework for examining, evaluating, and improving how we share data with the aim of facilitating scientific discovery. Efforts have been made to generalize these principles to research software and other digital products. Artificial intelligence (AI) models -- algorithms that have been trained on data rather than explicitly programmed -- are an important target for this because of the ever-increasing pace with which AI is transforming scientific and engineering domains. In this paper, we propose a practical definition of FAIR principles for AI models and create a FAIR AI project template that promotes adherence to these principles. We demonstrate how to implement these principles using a concrete example from experimental high energy physics: a graph neural network for identifying Higgs bosons decaying to bottom quarks. We study the robustness of these FAIR AI models and their portability across hardware architectures and software frameworks, and report new insights on the interpretability of AI predictions by studying the interplay between FAIR datasets and AI models. Enabled by publishing FAIR AI models, these studies pave the way toward reliable and automated AI-driven scientific discovery.
translated by 谷歌翻译
分子动力学(MD)模拟是各种科学领域的主力,但受到高计算成本的限制。基于学习的力场在加速AB-Initio MD模拟方面取得了重大进展,但对于许多需要长期MD仿真的现实世界应用程序仍然不够快。在本文中,我们采用了一种不同的机器学习方法,使用图形群集将物理系统粗糙化,并使用图形神经网络使用非常大的时间整合步骤对系统演变进行建模。一个新型的基于分数的GNN改进模块解决了长期模拟不稳定性的长期挑战。尽管仅接受了简短的MD轨迹数据训练,但我们学到的模拟器仍可以推广到看不见的新型系统,并比训练轨迹更长的时间。需要10-100 ns级的长时间动力学的属性可以在多个刻度级的速度上准确恢复,而不是经典的力场。我们证明了方法对两个现实的复杂系统的有效性:(1)隐式溶剂中的单链粗粒聚合物; (2)多组分锂离子聚合物电解质系统。
translated by 谷歌翻译
Masader(Alyafeai等,2021)创建了一种元数据结构,用于分类阿拉伯NLP数据集。但是,开发一种简单的方法来探索这种目录是一项艰巨的任务。为了为探索目录的用户和研究人员提供最佳体验,必须解决一些设计和用户体验的挑战。此外,用户与网站的交互可能提供了一种简单的方法来改善目录。在本文中,我们介绍了Masader Plus,该网络接口供用户浏览masader。我们演示了数据探索,过滤和简单的API,该API允许用户从后端检查数据集。可以使用此链接https://arbml.github.io/masader探索masader plus。可以在此处找到的视频录制说明界面的录制https://www.youtube.com/watch?v=setDlseqchk。
translated by 谷歌翻译
Healthcare Ai持有增加患者安全性,增强效率和改善患者结果的潜力,但研究通常受到数据访问,队列策划和分析工具的限制。电子健康记录数据,实时数据和实时高分辨率设备数据的集合和翻译可能是具有挑战性和耗时的。现实世界AI工具的发展需要克服数据采集,稀缺医院资源和数据治疗需求的挑战。这些瓶颈可能导致资源沉重的需求和AI系统的研究和开发延迟。我们提供了一种系统和方法,可加速数据采集,数据集开发和分析和AI模型开发。我们创建了一个依赖于可扩展的微服务后端的交互式平台。该系统可以每小时摄取15,000名患者记录,其中每个记录代表数千个多式数级测量,文本备注和高分辨率数据。统称,这些记录可以接近数据的数据。该系统可以在2-5分钟内进一步执行队列和初步数据集分析。因此,多个用户可以在实时同时协作以迭代数据集和模型。我们预计这种方法将推动现实世界的AI模型开发,并且在长期运行中,有意义地改善医疗保健交付。
translated by 谷歌翻译
基于机器学习(ML)的转向可以通过在线选择更科学意义的计算来提高基于合奏的模拟的性能。我们提出了DeepDrivemd,这是ML驱动的科学模拟转向的框架,我们用来通过在大型平行计算机上的有效耦合ML和HPC来实现分子动力学(MD)性能的稳定性提高。我们讨论了DeepDrivemd的设计,并描述了其性能。我们证明,与其他方法相对于其他方法,DeepDrivemd可以在100-1000倍加速度之间达到100-1000倍的加速度,这是通过执行的模拟时间量来衡量的,同时覆盖了模拟过程中采样的状态所量化的相同构象景观。实验是在最多1020个节点的领导级平台上进行的。该结果将DeepDrivemd作为ML驱动的HPC模拟方案的高性能框架建立,该场景支持不同的MD仿真和ML后端,并通过改善当前计算能力来改善长度和时间尺度来实现新的科学见解。
translated by 谷歌翻译
图形卷积神经网络(GCNN)是材料科学中流行的深度学习模型(DL)模型,可从分子结构的图表中预测材料特性。训练针对分子设计的准确而全面的GCNN替代物需要大规模的图形数据集,并且通常是一个耗时的过程。 GPU和分布计算的最新进展为有效降低GCNN培训的计算成本开辟了道路。但是,高性能计算(HPC)资源进行培训的有效利用需要同时优化大型数据管理和可扩展的随机批处理优化技术。在这项工作中,我们专注于在HPC系统上构建GCNN模型,以预测数百万分子的材料特性。我们使用Hydragnn,我们的内部库进行大规模GCNN培训,利用Pytorch中的分布数据并行性。我们使用Adios(高性能数据管理框架)来有效存储和读取大分子图数据。我们在两个开源大规模图数据集上进行并行训练,以构建一个称为Homo-Lumo Gap的重要量子属性的GCNN预测指标。我们衡量在两个DOE超级计算机上的方法的可伸缩性,准确性和收敛性:橡树岭领导力计算设施(OLCF)的峰会超级计算机和国家能源研究科学计算中心(NERSC)的Perlmutter系统。我们通过HydragnN表示我们的实验结果,显示I)与常规方法相比,将数据加载时间降低了4.2倍,而II)线性缩放性能在峰会和Perlmutter上均可训练高达1,024 GPU。
translated by 谷歌翻译
We introduce an end-to-end computational framework that enables hyperparameter optimization with the DeepHyper library, accelerated training, and interpretable AI inference with a suite of state-of-the-art AI models, including CGCNN, PhysNet, SchNet, MPNN, MPNN-transformer, and TorchMD-Net. We use these AI models and the benchmark QM9, hMOF, and MD17 datasets to showcase the prediction of user-specified materials properties in modern computing environments, and to demonstrate translational applications for the modeling of small molecules, crystals and metal organic frameworks with a unified, stand-alone framework. We deployed and tested this framework in the ThetaGPU supercomputer at the Argonne Leadership Computing Facility, and the Delta supercomputer at the National Center for Supercomputing Applications to provide researchers with modern tools to conduct accelerated AI-driven discovery in leadership class computing environments.
translated by 谷歌翻译
成像,散射和光谱是理解和发现新功能材料的基础。自动化和实验技术的当代创新导致这些测量更快,分辨率更高,从而产生了大量的分析数据。这些创新在用户设施和同步射击光源时特别明显。机器学习(ML)方法经常开发用于实时地处理和解释大型数据集。然而,仍然存在概念障碍,进入设施一般用户社区,通常缺乏ML的专业知识,以及部署ML模型的技术障碍。在此,我们展示了各种原型ML模型,用于在国家同步光源II(NSLS-II)的多个波束线上在飞行分析。我们谨慎地描述这些示例,专注于将模型集成到现有的实验工作流程中,使得读者可以容易地将它们自己的ML技术与具有普通基础设施的NSLS-II或设施的实验中的实验。此处介绍的框架展示了几乎没有努力,多样化的ML型号通过集成到实验编程和数据管理的现有Blueske套件中与反馈回路一起运行。
translated by 谷歌翻译
The need for data privacy and security -- enforced through increasingly strict data protection regulations -- renders the use of healthcare data for machine learning difficult. In particular, the transfer of data between different hospitals is often not permissible and thus cross-site pooling of data not an option. The Personal Health Train (PHT) paradigm proposed within the GO-FAIR initiative implements an 'algorithm to the data' paradigm that ensures that distributed data can be accessed for analysis without transferring any sensitive data. We present PHT-meDIC, a productively deployed open-source implementation of the PHT concept. Containerization allows us to easily deploy even complex data analysis pipelines (e.g, genomics, image analysis) across multiple sites in a secure and scalable manner. We discuss the underlying technological concepts, security models, and governance processes. The implementation has been successfully applied to distributed analyses of large-scale data, including applications of deep neural networks to medical image data.
translated by 谷歌翻译
Many sciences have made significant breakthroughs by adopting online tools that help organize, structure and mine information that is too detailed to be printed in journals. In this paper, we introduce OpenML, a place for machine learning researchers to share and organize data in fine detail, so that they can work more effectively, be more visible, and collaborate with others to tackle harder problems. We discuss how OpenML relates to other examples of networked science and what benefits it brings for machine learning research, individual scientists, as well as students and practitioners.
translated by 谷歌翻译