休息状态功能磁共振成像(FMRI)是一种强大的成像技术,用于研究UTETO脑功能的功能发展。然而,胎儿的不可预测和过度运动具有有限的临床应用,因为它导致可以系统地改变了功能连接模式的大量信号波动。以前的研究专注于在大胎儿头部运动的情况下的运动参数的准确估计,并在每个时间点使用3D单步插值方法来恢复无动态的FMRI图像。这并不保证重建的图像对应于给定获取的数据的FMRI时间序列的最小错误表示。在这里,我们提出了一种基于胎儿FMRI散射切片的四维迭代重建的新技术。在一组真正的临床FMRI胎儿上定量评估所提出的方法的准确性。结果表明与传统的3D插值方法相比,重建质量的改进。
translated by 谷歌翻译
在几乎不可预测且通常严重的主题运动的情况下获得的多个MR Slices的胎儿大脑的体积重建是一项具有挑战性的任务,对切片转换的初始化非常敏感。我们建议使用经过合成转换数据训练的变压器提出了一种新型的切片到体积的注册方法,该数据将MR Slices的多个堆栈模拟为序列。通过注意机制,我们的模型会自动检测切片之间的相关性,并使用来自其他切片的信息预测一个切片的转换。我们还估计了基础3D卷,以帮助切片到体积的注册,并交替更新音量和转换以提高准确性。合成数据的结果表明,与现有的最新方法相比,我们的方法可实现较低的注册误差和更好的重建质量。还进行了使用现实世界中MRI数据的实验,以证明该模型在严重的胎儿运动下提高3D重建质量的能力。
translated by 谷歌翻译
血氧水平依赖性(BOLD)用母体高氧可以评估胎盘内的氧运输,并已成为研究胎盘功能的有前途的工具。测量信号随着时间的变化需要在时间序列的每个体积中分割胎盘。由于大胆的时间序列中的数量大量,现有研究依靠注册将所有卷映射到手动分段模板。由于胎盘由于胎儿运动,母体运动和收缩而导致大变形,因此这种方法通常会导致大量废弃体积,而注册方法失败。在这项工作中,我们提出了一个基于U-NET神经网络体系结构的机器学习模型,以自动以粗体MRI分割胎盘,并将其应用于时间序列中的每个卷。我们使用边界加权损失函数来准确捕获胎盘形状。我们的模型经过训练和测试,并在91位包含健康胎儿的受试者,胎儿生长限制的胎儿以及BMI高的母亲中进行了测试。当与地面真实标签匹配时,我们的骰子得分为0.83 +/- 0.04,并且我们的模型在粗体时间序列中可靠地分割量氧和高氧点的量。我们的代码和训练有素的模型可在https://github.com/mabulnaga/automatic-placenta-mentegation上获得。
translated by 谷歌翻译
从磁共振成像(MRI)数据(称为颅骨条状)中去除非脑信号是许多神经图像分析流的组成部分。尽管它们很丰富,但通常是针对具有特定采集特性的图像量身定制的,即近乎各向异性的分辨率和T1加权(T1W)MRI对比度,这些分辨率在研究环境中很普遍。结果,现有的工具倾向于适应其他图像类型,例如在诊所常见的快速旋转回声(FSE)MRI中获得的厚切片。尽管近年来基于学习的大脑提取方法已获得吸引力,但这些方法面临着类似的负担,因为它们仅对训练过程中看到的图像类型有效。为了在成像协议的景观中实现强大的颅骨缠身,我们引入了Synthstrip,这是一种快速,基于学习的脑萃取工具。通过利用解剖学分割来生成具有解剖学,强度分布和远远超过现实医学图像范围的完全合成训练数据集,Synthstrip学会了成功推广到各种真实获得的大脑图像,从而消除了使用训练数据的需求目标对比。我们证明了合成条的功效对受试者人群的各种图像采集和决议的功效,从新生儿到成人。我们显示出与流行的颅骨基线的准确性的实质性提高 - 所有这些基线都采用单个训练有素的模型。我们的方法和标记的评估数据可在https://w3id.org/synthstrip上获得。
translated by 谷歌翻译
In this work, we propose a novel image reconstruction framework that directly learns a neural implicit representation in k-space for ECG-triggered non-Cartesian Cardiac Magnetic Resonance Imaging (CMR). While existing methods bin acquired data from neighboring time points to reconstruct one phase of the cardiac motion, our framework allows for a continuous, binning-free, and subject-specific k-space representation.We assign a unique coordinate that consists of time, coil index, and frequency domain location to each sampled k-space point. We then learn the subject-specific mapping from these unique coordinates to k-space intensities using a multi-layer perceptron with frequency domain regularization. During inference, we obtain a complete k-space for Cartesian coordinates and an arbitrary temporal resolution. A simple inverse Fourier transform recovers the image, eliminating the need for density compensation and costly non-uniform Fourier transforms for non-Cartesian data. This novel imaging framework was tested on 42 radially sampled datasets from 6 subjects. The proposed method outperforms other techniques qualitatively and quantitatively using data from four and one heartbeat(s) and 30 cardiac phases. Our results for one heartbeat reconstruction of 50 cardiac phases show improved artifact removal and spatio-temporal resolution, leveraging the potential for real-time CMR.
translated by 谷歌翻译
光学相干断层扫描(OCT)是微尺度的体积成像方式,已成为眼科临床标准。 OCT仪器图像通过栅格扫描整个视网膜上的聚焦光点,从而获取顺序的横截面图像以生成体积数据。收购期间的患者眼动作带来了独特的挑战:可能会发生非刚性,不连续的扭曲,从而导致数据和扭曲的地形测量差距。我们提出了一种新的失真模型和相应的全自动,无参考优化策略,用于在正交栅格扫描,视网膜OCT量中进行计算运动校正。使用新型的,域特异性的时空参数化,可以首次连续校正眼睛运动。时间正则化的参数估计提高了先前空间方法的鲁棒性和准确性。我们在单个映射中在3D中单独校正每个A-SCAN,包括OCT血管造影协议中使用的重复采集。专业的3D前向图像扭曲将中位运行时间降低到<9 s,足够快地供临床使用。我们对18名具有眼病理学的受试者进行了定量评估,并在微扫描过程中证明了准确的校正。横向校正仅受眼震颤的限制,而亚微米可重复性是轴向可重复性的(中位数为0.51 UM中位数),这比以前的工作有了显着改善。这允许评估局灶性视网膜病理学的纵向变化,作为疾病进展或治疗反应的标志,并承诺能够使多种新功能(例如Suppersmplempled/Super-Supersmpled/Super-Super-Super-Super-Spemply/Super-Supertolution Reponstruction and Ransition and Anallys in Dealitaligy Eye the Neurologation疾病中发生的病理眼运动分析。
translated by 谷歌翻译
运动补偿的MR重建(MCMR)是一个强大的概念,具有巨大的潜力,由两个耦合的子问题组成:运动估计,假设已知图像和图像重建,假设已知运动。在这项工作中,我们为MCMR提出了一个基于学习的自我监督框架,以有效处理心脏MR成像中的非刚性运动腐败。与传统的MCMR方法相反,在重建之前估算运动并在迭代优化过程中保持不变,我们引入了动态运动估计过程,并将其嵌入到独立的优化中。我们建立了一个心脏运动估计网络,该网络通过小组的注册方法利用时间信息,并在运动估计和重建之间进行联合优化。在40个获得的2D心脏MR CINE数据集上进行的实验表明,所提出的展开的MCMR框架可以在其他最先进的方法失败的情况下以高加速度速率重建高质量的MR图像。我们还表明,关节优化机制对两个子任务(即运动估计和图像重建)都是互惠互利的,尤其是当MR图像高度不足时。
translated by 谷歌翻译
肾脏DCE-MRI旨在通过估计示踪动力学(TK)模型参数来定义评估肾脏解剖学和对肾功能的定量评估。 TK模型参数的准确估计需要具有高时间分辨率的动脉输入功能(AIF)的精确测量。加速成像用于实现高时间分辨率,其在重建图像中产生欠采样伪像。压缩传感(CS)方法提供各种重建选项。最常见的是,鼓励正规化的时间差异的稀疏性以减少伪影。在CS方法中越来越多的正则化除去环境伪像,但也会过度平滑时间,这减少了参数估计精度。在这项工作中,我们提出了一种训练有素的深神经网络,以减少MRI欠采样伪像而不降低功能成像标记的准确性。通过从较低的维度表示,我们通过从较低维度表示来促进正常化而不是在惩罚术语中进行规范化。在此手稿中,我们激励并解释了较低的维度输入设计。我们将我们的方法与多个正则化权重进行CS重建的方法。所提出的方法导致肾生物标志物与使用CS重建估计的地面真理标记高度相关,这是针对功能分析进行了优化的。同时,所提出的方法减少了重建图像中的伪像。
translated by 谷歌翻译
在本文中,我们开发了一种高效的回顾性深度学习方法,称为堆叠U-网,具有自助前沿,解决MRI中刚性运动伪影的问题。拟议的工作利用损坏的图像本身使用额外的知识前瞻,而无需额外的对比度数据。所提出的网络通过共享来自相同失真对象的连续片的辅助信息来学习错过的结构细节。我们进一步设计了一种堆叠的U-网的细化,便于保持图像空间细节,从而提高了像素到像素依赖性。为了执行网络培训,MRI运动伪像的模拟是不可避免的。我们使用各种类型的图像前瞻呈现了一个密集的分析:来自同一主题的其他图像对比的提出的自助前锋和前锋。实验分析证明了自助前锋的有效性和可行性,因为它不需要任何进一步的数据扫描。
translated by 谷歌翻译
胎儿肺扩散加权MRI(DWI)数据的定量分析显示,提供了提供的定量成像生物标志物,这些生物标志物间接反映了胎儿肺的成熟。但是,采集期间的胎儿运动阻碍了对获得的DWI数据的定量分析,因此妨碍了可靠的临床利用。我们介绍了QDWI-Morph,这是一种无监督的深神经网络结构,用于运动补偿定量DWI(QDWI)分析。我们的方法将注册子网络与定量DWI模型拟合子网络融合。我们同时估计QDWI参数和运动模型,通过最大程度地降低整合注册损失和模型拟合质量损失的生物形态信息损失函数。我们证明了QDWI-MORPH的附加值:1)基线QDWI分析没有运动补偿和2)仅包含注册损失的基线深学习模型。 QDWI-morph通过对胎儿肺DWI数据的体内QDWI分析(r-squared = 0.32 vs. 0.13,0.28)实现了与胎龄的相关性。我们的QDWI-MORPH有可能对DWI数据进行运动补偿的定量分析,并为非侵入性胎儿肺成熟度评估提供临床上可行的生物标志物。我们的代码可在以下网址获得:https://github.com/technioncomputationalmrilab/qdwi-morph。
translated by 谷歌翻译
从电影心脏磁共振(CMR)成像中恢复心脏的3D运动可以评估区域心肌功能,对于理解和分析心血管疾病很重要。但是,3D心脏运动估计是具有挑战性的,因为获得的Cine CMR图像通常是2D切片,它限制了对整个平面运动的准确估计。为了解决这个问题,我们提出了一个新颖的多视图运动估计网络(Mulvimotion),该网络集成了以短轴和长轴平面获取的2D Cine CMR图像,以学习心脏的一致性3D运动场。在提出的方法中,构建了一个混合2D/3D网络,以通过从多视图图像中学习融合表示形式来生成密集的3D运动场。为了确保运动估计在3D中保持一致,在训练过程中引入了形状正则化模块,其中利用了来自多视图图像的形状信息,以提供3D运动估计的弱监督。我们对来自英国生物银行研究的580名受试者的2D Cine CMR图像进行了广泛评估,用于左心室心肌的3D运动跟踪。实验结果表明,该方法在定量和定性上优于竞争方法。
translated by 谷歌翻译
全身动态PET中的受试者运动引入了框架间的不匹配,并严重影响参数成像。传统的非刚性注册方法通常在计算上是强度且耗时的。深度学习方法在快速速度方面实现高精度方面是有希望的,但尚未考虑示踪剂分布变化或整体范围。在这项工作中,我们开发了一个无监督的自动深度学习框架,以纠正框架间的身体运动。运动估计网络是一个卷积神经网络,具有联合卷积长的短期记忆层,充分利用动态的时间特征和空间信息。我们的数据集在90分钟的FDG全身动态PET扫描中包含27个受试者。与传统和深度学习基线相比,具有9倍的交叉验证,我们证明了拟议的网络在增强的定性和定量空间对齐方面获得了卓越的性能在显着降低参数拟合误差中。我们还展示了拟议的运动校正方法的潜力来影响对估计参数图像的下游分析,从而提高了将恶性与良性多代谢区域区分开的能力。一旦受过培训,我们提出的网络的运动估计推理时间比常规注册基线快460倍,表明其潜力很容易应用于临床环境中。
translated by 谷歌翻译
临床实践中使用的医学图像是异质的,与学术研究中研究的扫描质量不同。在解剖学,伪影或成像参数不寻常或方案不同的极端情况下,预处理会分解。最需要对这些变化的方法可靠。提出了一种新颖的深度学习方法,以将人脑快速分割为132个区域。提出的模型使用有效的U-NET型网络,并从不同视图和分层关系的交点上受益,以在端到端训练期间融合正交2D平面和脑标签。部署了弱监督的学习,以利用部分标记的数据来进行整个大脑分割和颅内体积(ICV)的估计。此外,数据增强用于通过生成具有较高的脑扫描的磁共振成像(MRI)数据来扩展模型训练,同时保持数据隐私。提出的方法可以应用于脑MRI数据,包括头骨或任何其他工件,而无需预处理图像或性能下降。与最新的一些实验相比,使用了不同的Atlases的几项实验,以评估受过训练模型的分割性能,并且与不同内部和不同内部和不同内部方法的现有方法相比,结果显示了较高的分割精度和鲁棒性。间域数据集。
translated by 谷歌翻译
目的:扫描间动作是$ r_1 $估计中的实质性源,可以预期在$ b_1 $字段更不均匀的地方增加7t。既定的校正方案不转化为7T,因为它需要体线圈参考。在这里,我们介绍了两种越优于既定方法的替代方案。由于它们计算它们不需要体内圈图像的相对敏感性。理论:所提出的方法使用线圈组合的幅度图像来获得相对线圈敏感性。第一方法通过简单的比率有效地计算相对敏感性;第二种通过拟合更复杂的生成模型。方法:使用变量翻转角度(VFA)方法计算$ R_1 $ MAP。在3T和7T中获取多个数据集,在VFA卷的获取之间,没有运动。 $ R_1 $ MAPS在没有修正的情况下,建议的校正和(在3T)与先前建立的校正方案。结果:在3T时,所提出的方法优于基线方法。扫描间运动人工制品也在7T下降。然而,如果还包含位置特定的发射现场效果,则再现性仅在没有运动条件的情况下融合。结论:提出的方法简化了$ R_1 $ MAPS的扫描间运动校正,并且适用于3T和7T,通常不可用。所有方法的开源代码都可公开可用。
translated by 谷歌翻译
自由呼吸的心脏MRI计划是呼吸持有的Cine MRI协议的竞争替代方案,使适用于儿科和其他不能屏住呼吸的人群。因为来自切片的数据顺序获取,所以心脏/呼吸运动模式可能对每个切片不同;目前的自由呼吸方法对每个切片进行独立恢复。除了不能利用切片间冗余之外,需要手动干预或复杂的后处理方法来对准恢复后的图像进行量化。为了克服这些挑战,我们提出了一种无监督的变分深歧管学习方案,用于多层动态MRI的联合对准和重建。该方案共同了解深网络的参数以及捕获特定对象的K-T空间数据的运动引起的动态变化的每个切片的潜在矢量。变形框架最小化表示中的非唯一性,从而提供改进的对准和重建。
translated by 谷歌翻译
运动估计是用于评估目标器官解剖学和功能的动态医学图像处理的基本步骤。然而,通过评估局部图像相似性通过评估局部图像相似性优化运动场的基于图像的运动估计方法,易于产生令人难以置信的估计,尤其是在大运动的情况下。在这项研究中,我们提供了一种新颖的稀疏密度(DSD)的运动估计框架,其包括两个阶段。在第一阶段,我们处理原始密集图像以提取稀疏地标以表示目标器官解剖拓扑,并丢弃对运动估计不必要的冗余信息。为此目的,我们介绍一个无监督的3D地标检测网络,以提取用于目标器官运动估计的空间稀疏但代表性的地标。在第二阶段,我们从两个不同时间点的两个图像的提取稀疏地标的稀疏运动位移得出。然后,我们通过将稀疏地标位移突出回致密图像域,呈现运动重建网络来构造运动场。此外,我们从我们的两级DSD框架中使用估计的运动场作为初始化,并提高轻量级且有效的迭代优化中的运动估计质量。我们分别评估了两种动态医学成像任务的方法,分别为模型心脏运动和肺呼吸运动。与现有的比较方法相比,我们的方法产生了出色的运动估计精度。此外,广泛的实验结果表明,我们的解决方案可以提取良好代表性解剖标志,而无需手动注释。我们的代码在线公开提供。
translated by 谷歌翻译
敏感性张量成像(STI)是一种新兴的磁共振成像技术,它以二阶张量模型来表征各向异性组织磁敏感性。 STI有可能为白质纤维途径的重建以及在MM分辨率下的大脑中的髓磷脂变化的检测提供信息,这对于理解健康和患病大脑的大脑结构和功能具有很大的价值。但是,STI在体内的应用受到了繁琐且耗时的采集要求,以测量易感性引起的MR相变为多个(通常超过六个)的头部方向。由于头圈的物理限制,头部旋转角的限制增强了这种复杂性。结果,STI尚未广泛应用于体内研究。在这项工作中,我们通过为STI的图像重建算法提出利用数据驱动的先验来解决这些问题。我们的方法称为DEEPSTI,通过深层神经网络隐式地了解了数据,该网络近似于STI的正常器函数的近端操作员。然后,使用学习的近端网络对偶极反转问题进行迭代解决。使用模拟和体内人类数据的实验结果表明,根据重建张量图,主要特征向量图和拖拉术结果,对最先进的算法的改进很大六个不同的方向。值得注意的是,我们的方法仅在人体内的一个方向上实现了有希望的重建结果,我们证明了该技术在估计多发性硬化症患者中估计病变易感性各向异性的潜在应用。
translated by 谷歌翻译
Magnetic Resonance Fingerprinting (MRF) is an efficient quantitative MRI technique that can extract important tissue and system parameters such as T1, T2, B0, and B1 from a single scan. This property also makes it attractive for retrospectively synthesizing contrast-weighted images. In general, contrast-weighted images like T1-weighted, T2-weighted, etc., can be synthesized directly from parameter maps through spin-dynamics simulation (i.e., Bloch or Extended Phase Graph models). However, these approaches often exhibit artifacts due to imperfections in the mapping, the sequence modeling, and the data acquisition. Here we propose a supervised learning-based method that directly synthesizes contrast-weighted images from the MRF data without going through the quantitative mapping and spin-dynamics simulation. To implement our direct contrast synthesis (DCS) method, we deploy a conditional Generative Adversarial Network (GAN) framework and propose a multi-branch U-Net as the generator. The input MRF data are used to directly synthesize T1-weighted, T2-weighted, and fluid-attenuated inversion recovery (FLAIR) images through supervised training on paired MRF and target spin echo-based contrast-weighted scans. In-vivo experiments demonstrate excellent image quality compared to simulation-based contrast synthesis and previous DCS methods, both visually as well as by quantitative metrics. We also demonstrate cases where our trained model is able to mitigate in-flow and spiral off-resonance artifacts that are typically seen in MRF reconstructions and thus more faithfully represent conventional spin echo-based contrast-weighted images.
translated by 谷歌翻译
基于模型的经颅超声疗法的治疗计划通常涉及从头部的X射线计算机断层扫描(CT)图像中映射头骨的声学特性。在这里,将三种用于从磁共振(MR)图像中生成伪CT图像的方法作为CT的替代方法。在配对的MR-CT图像上训练了卷积神经网络(U-NET),以从T1加权或零回波时间(ZTE)MR图像(分别表示TCT和ZCT)生成伪CT图像。还实施了从中兴通讯到伪CT的直接映射(表示为CCT)。在比较测试集的伪CT和地面真相CT图像时,整个头部的平均绝对误差为133、83和145 Hounsfield单位(HU),以及398、222和336 HU的头骨内的颅骨内部的平均误差为133、83和145个。 TCT,ZCT和CCT图像。还使用生成的伪CT图像进行了超声模拟,并将其与基于CT的模拟进行了比较。使用环形阵列传感器针对视觉或运动皮层。基于TCT图像的模拟,模拟局灶性局灶性,焦点位置和焦距的平均差异为9.9%,1.5 mm和15.1%,ZCT的平均差异为5.7%,0.6 mm和5.7%,为6.7%,和5.7% CCT为0.9毫米,为12.1%。映射的图像的改进结果突出了使用成像序列的优势,从而改善了颅骨的对比度。总体而言,这些结果表明,基于MR图像的声学仿真可以与基于CT的声学相比精度。
translated by 谷歌翻译
心肌运动和变形是表征心脏功能的丰富描述符。图像注册是心肌运动跟踪最常用的技术,是一个不当的反问题,通常需要先前对解决方案空间进行假设。与大多数现有的方法相反,它们强加了明确的通用正则化(例如平滑度),在这项工作中,我们提出了一种新的方法,该方法可以隐式地学习了特定于应用程序的生物力学知识,并将其嵌入了神经网络参数化转换模型中。尤其是,提出的方法利用基于变异自动编码器的生成模型来学习生物力学上合理变形的多种多样。然后,可以通过穿越学习的歧管来搜索最佳转换时,在考虑序列信息时搜索最佳转换。该方法在三个公共心脏Cine MRI数据集中进行了验证,并具有全面的评估。结果表明,所提出的方法可以胜过其他方法,从而获得更高的运动跟踪精度,并具有合理的量保存和更好地变化数据分布的概括性。它还可以更好地估计心肌菌株,这表明该方法在表征时空特征以理解心血管疾病方面的潜力。
translated by 谷歌翻译