A computational graph in a deep neural network (DNN) denotes a specific data flow diagram (DFD) composed of many tensors and operators. Existing toolkits for visualizing computational graphs are not applicable when the structure is highly complicated and large-scale (e.g., BERT [1]). To address this problem, we propose leveraging a suite of visual simplification techniques, including a cycle-removing method, a module-based edge-pruning algorithm, and an isomorphic subgraph stacking strategy. We design and implement an interactive visualization system that is suitable for computational graphs with up to 10 thousand elements. Experimental results and usage scenarios demonstrate that our tool reduces 60% elements on average and hence enhances the performance for recognizing and diagnosing DNN models. Our contributions are integrated into an open-source DNN visualization toolkit, namely, MindInsight [2].
translated by 谷歌翻译
Despite the surprising few-shot performance of in-context learning (ICL), it is still a common practice to randomly sample examples to serve as context. This paper advocates a new principle for ICL: self-adaptive in-context learning. The self-adaption mechanism is introduced to help each sample find an in-context example permutation (i.e., selection and ordering) that can derive the correct prediction, thus maximizing performance. To validate the effectiveness of self-adaptive ICL, we propose a general select-then-rank framework and instantiate it with new selection and ranking algorithms. Upon extensive evaluation on eight different NLP datasets, our self-adaptive ICL method achieves a 40% relative improvement over the common practice setting. Further analysis reveals the enormous potential of self-adaptive ICL that it might be able to close the gap between ICL and finetuning given more advanced algorithms. Our code is released to facilitate future research in this area: https://github.com/Shark-NLP/self-adaptive-ICL
translated by 谷歌翻译
Stairs are common building structures in urban environment, and stair detection is an important part of environment perception for autonomous mobile robots. Most existing algorithms have difficulty combining the visual information from binocular sensors effectively and ensuring reliable detection at night and in the case of extremely fuzzy visual clues. To solve these problems, we propose a neural network architecture with inputs of both RGB map and depth map. Specifically, we design the selective module which can make the network learn the complementary relationship between RGB map and depth map and effectively combine the information from RGB map and depth map in different scenes. In addition, we also design a line clustering algorithm for the post-processing of detection results, which can make full use of the detection results to obtain the geometric parameters of stairs. Experiments on our dataset show that our method can achieve better accuracy and recall compared with the previous state-of-the-art deep learning method, which are 5.64% and 7.97%, respectively. Our method also has extremely fast detection speed, and a lightweight version can achieve 300 + frames per second with the same resolution, which can meet the needs of most real-time detection scenes.
translated by 谷歌翻译
Traditional machine learning follows a close-set assumption that the training and test set share the same label space. While in many practical scenarios, it is inevitable that some test samples belong to unknown classes (open-set). To fix this issue, Open-Set Recognition (OSR), whose goal is to make correct predictions on both close-set samples and open-set samples, has attracted rising attention. In this direction, the vast majority of literature focuses on the pattern of open-set samples. However, how to evaluate model performance in this challenging task is still unsolved. In this paper, a systematic analysis reveals that most existing metrics are essentially inconsistent with the aforementioned goal of OSR: (1) For metrics extended from close-set classification, such as Open-set F-score, Youden's index, and Normalized Accuracy, a poor open-set prediction can escape from a low performance score with a superior close-set prediction. (2) Novelty detection AUC, which measures the ranking performance between close-set and open-set samples, ignores the close-set performance. To fix these issues, we propose a novel metric named OpenAUC. Compared with existing metrics, OpenAUC enjoys a concise pairwise formulation that evaluates open-set performance and close-set performance in a coupling manner. Further analysis shows that OpenAUC is free from the aforementioned inconsistency properties. Finally, an end-to-end learning method is proposed to minimize the OpenAUC risk, and the experimental results on popular benchmark datasets speak to its effectiveness.
translated by 谷歌翻译
图像文本聚类(ITC)的目标是通过整合这些异质样品的多模式的互补和一致信息来找到正确的簇。但是,目前的大多数研究都根据理想的前提分析了ITC,即每种模式中的样本都是完整的。但是,在现实情况下,这种推定并不总是有效的。缺少的数据问题使图像文本特征学习性能退化,并最终会影响ITC任务中的概括能力。尽管已经提出了一系列方法来解决此不完整的图像文本群集问题(IITC),但仍然存在以下问题:1)大多数现有方法几乎不考虑异质特征域之间的明显差距。 2)对于缺少数据,很少保证由现有方法生成的表示形式适合聚类任务。 3)现有方法不利用内部和内部模式的潜在连接。在本文中,我们提出了一个聚类引起的生成不完整的图像文本聚类(CIGIT-C)网络,以应对上述挑战。更具体地说,我们首先使用特定于模态的编码器将原始功能映射到更独特的子空间。通过使用对抗生成网络在另一种模态上产生一种方式,可以彻底探索内部内部和模式之间的潜在连接。最后,我们使用两个KL DiverGence损失更新相应的模态特异性编码器。公共图像文本数据集的实验结果表明,建议的方法优于IITC作业更有效。
translated by 谷歌翻译
步态冻结(FOG)是帕金森氏病的最常见症状之一,这是中枢神经系统的神经退行性疾病,影响了世界各地数百万的人。为了满足提高雾的治疗质量的紧迫需求,设计雾计算机辅助检测和量化工具的需求越来越重要。作为一种用于收集运动模式的非侵入性技术,从压力敏感步态垫中获得的脚步压力序列为评估诊所和家庭环境中的雾气提供了绝佳的机会。在这项研究中,提出了雾检测为一项顺序建模任务,并提出了一种新颖的深度学习结构,即对对抗性时空网络(ASTN),提出了跨多个级别的雾模式。引入了一种新型的对抗训练方案,并具有多级主题鉴别器,以获得独立的雾代表示,这有助于降低由于高主体间方差而导致的过度拟合风险。结果,对于看不见的受试者,可以实现强大的雾检测。拟议的计划还阐明了从其他场景中改善主题级临床研究,因为它可以与许多现有的深层建筑集成在一起。据我们所知,这是基于脚步压力的雾检测的最早研究之一,利用ASTN的方法是追求独立于主题的表示形式的第一个深神经网络架构。从21名受试者收集的393次试验的实验结果表明,AUC 0.85的雾检测提出的ASTN表现令人鼓舞。
translated by 谷歌翻译
实际上,许多医疗数据集在疾病标签空间上定义了基本的分类学。但是,现有的医学诊断分类算法通常假定具有语义独立的标签。在这项研究中,我们旨在利用深度学习算法来利用类层次结构,以更准确,可靠的皮肤病变识别。我们提出了一个双曲线网络,以共同学习图像嵌入和类原型。事实证明,双曲线为与欧几里得几何形状更好地建模层次关系提供了一个空间。同时,我们使用从类层次结构编码的距离矩阵限制双曲线原型的分布。因此,学习的原型保留了嵌入空间中的语义类关系,我们可以通过将图像特征分配给最近的双曲线类原型来预测图像的标签。我们使用内部皮肤病变数据集,该数据集由65种皮肤疾病的大约230k皮肤镜图像组成,以验证我们的方法。广泛的实验提供了证据表明,与模型相比,我们的模型可以实现更高的准确性,而在不考虑班级关系的情况下可以实现更高的严重分类错误。
translated by 谷歌翻译
由于课堂之间不可避免的语义歧义,TOP-K错误已成为大规模分类基准测试的流行指标。有关TOP-K优化的现有文献通常集中于TOP-K目标的优化方法,同时忽略了度量本身的局限性。在本文中,我们指出,顶级目标缺乏足够的歧视,因此诱导的预测可能使完全无关的标签成为最高等级。为了解决此问题,我们开发了一个新颖的度量标准,名为Top-K曲线(AUTKC)下的部分区域。理论分析表明,AUTKC具有更好的歧视能力,其贝叶斯最佳分数函数可以在条件概率方面给出正确的顶级排名。这表明AUTKC不允许无关标签出现在顶部列表中。此外,我们提出了一个经验替代风险最小化框架,以优化拟议的指标。从理论上讲,我们提出(1)贝叶斯最佳分数函数的渔民一致性的足够条件; (2)在简单的超参数设置下对类不敏感的概括上限。最后,四个基准数据集的实验结果验证了我们提出的框架的有效性。
translated by 谷歌翻译
随着视频数量的越来越多,对技术的需求很大,可以帮助人们迅速导航到他们感兴趣的视频片段。但是,当前的视频理解主要理解主要是视频内容摘要,而几乎没有努力,而对探索视频的结构。受文本轮廓生成的启发,我们介绍了一项新颖的视频理解任务,即视频大纲生成(VOG)。该任务定义为包含两个子任务:(1)首先根据内容结构对视频进行分割,然后(2)为每个段生成一个标题。要学习和评估VOG,我们注释了一个10K+数据集,称为Duvog。具体来说,我们使用OCR工具来识别视频的字幕。然后,要求注释者将字幕分为章节,并将每个章节分为标题。在视频中,突出显示的文本往往是标题,因为它更有可能引起人们的注意。因此,我们提出了一个视觉字幕功能增强的视频大纲生成模型(VSENET),该模型将文本字幕及其视觉字体大小和位置作为输入。我们将VOG任务视为一个序列标记问题,该问题提取了跨标题的位置,然后将其重写以形成最终大纲。此外,基于视频概述和文本概述之间的相似性,我们使用大量文章带有章节标题来预先我们的模型。 Duvog上的实验表明,我们的模型在很大程度上胜过其他基线方法,对于视频分割水平达到了77.1的F1得分,对于标题生成级别的Rouge-L_F0.5的85.0。
translated by 谷歌翻译
只有单个目标扬声器的语音供参考的单发语音转换(VC)已成为一个热门研究主题。现有作品通常会散布音色,而有关音高,节奏和内容的信息仍然混合在一起。为了进一步删除这些语音组件,有效地执行一声VC,我们采用随机重新采样用于音高和内容编码器,并使用互信息的各种对比对数比率上限和基于梯度反向层的对抗性相互信息学习来确保不同部分在训练过程中仅包含所需的分离表示的潜在空间。 VCTK数据集的实验显示该模型就自然性和智能性方面实现了一声VC的最新性能。此外,我们可以通过语音表示分离分别传递音色,音调和节奏的单发VC的特征。我们的代码,预训练的模型和演示可在https://im1eon.github.io/is2022-Srdvc/上获得。
translated by 谷歌翻译