大芬基的物种鉴定,即蘑菇,一直是一项具有挑战性的任务。仍然有大量有毒的蘑菇,这对人们的生命构成了风险。但是,传统的识别方法需要大量在手动识别的分类学领域具有知识的专家,而且不仅效率低下,而且消耗了大量的人力和资本成本。在本文中,我们提出了一个基于注意力机构的新模型,Mushroomnet,该模型将轻型网络MobilenetV3应用于骨干模型,并结合了我们提出的注意力结构,并在蘑菇识别任务中实现了出色的性能。在公共数据集上,Mushroomnet模型的测试准确性已达到83.9%,在本地数据集上,测试精度已达到77.4%。提出的注意机制很好地将注意力集中在蘑菇图像的身体上,以进行混合通道注意力,并通过GRAD-CAM可视化的注意热图。此外,在这项研究中,将遗传距离添加到蘑菇图像识别任务中,将遗传距离用作表示空间,并且数据集中每对蘑菇物种之间的遗传距离被用作遗传距离表示的嵌入空间,以预测图像距离和物种。确认。我们发现,使用MES激活函数可以很好地预测蘑菇的遗传距离,但精度低于软疗法。拟议的蘑菇网已被证明,它显示出自动和在线蘑菇图像的巨大潜力,拟议的自动程序将有助于并参考传统的蘑菇分类。
translated by 谷歌翻译
基于最新的激光痛的3D对象检测方法依赖于监督学习和大型标记数据集。但是,注释LiDAR数据是资源消耗的,仅取决于监督的学习限制了训练有素的模型的适用性。自我监督的培训策略可以通过学习下游3D视觉任务的通用点云主链模型来减轻这些问题。在此背景下,我们显示了自我监督的多帧流程表示与单帧3D检测假设之间的关系。我们的主要贡献利用了流动和运动表示,并将自我保护的主链与有监督的3D检测头结合在一起。首先,自我监督的场景流估计模型通过循环一致性进行了训练。然后,该模型的点云编码器用作单帧3D对象检测头模型的骨干。第二个3D对象检测模型学会利用运动表示来区分表现出不同运动模式的动态对象。 Kitti和Nuscenes基准的实验表明,提出的自我监管的预训练可显着提高3D检测性能。 https://github.com/emecercelik/ssl-3d-detection.git
translated by 谷歌翻译
Diffusion Probabilistic Models (DPMs) have shown a powerful capacity of generating high-quality image samples. Recently, diffusion autoencoders (Diff-AE) have been proposed to explore DPMs for representation learning via autoencoding. Their key idea is to jointly train an encoder for discovering meaningful representations from images and a conditional DPM as the decoder for reconstructing images. Considering that training DPMs from scratch will take a long time and there have existed numerous pre-trained DPMs, we propose \textbf{P}re-trained \textbf{D}PM \textbf{A}uto\textbf{E}ncoding (\textbf{PDAE}), a general method to adapt existing pre-trained DPMs to the decoders for image reconstruction, with better training efficiency and performance than Diff-AE. Specifically, we find that the reason that pre-trained DPMs fail to reconstruct an image from its latent variables is due to the information loss of forward process, which causes a gap between their predicted posterior mean and the true one. From this perspective, the classifier-guided sampling method can be explained as computing an extra mean shift to fill the gap, reconstructing the lost class information in samples. These imply that the gap corresponds to the lost information of the image, and we can reconstruct the image by filling the gap. Drawing inspiration from this, we employ a trainable model to predict a mean shift according to encoded representation and train it to fill as much gap as possible, in this way, the encoder is forced to learn as much information as possible from images to help the filling. By reusing a part of network of pre-trained DPMs and redesigning the weighting scheme of diffusion loss, PDAE can learn meaningful representations from images efficiently. Extensive experiments demonstrate the effectiveness, efficiency and flexibility of PDAE.
translated by 谷歌翻译
Deep learning (DL) has become a driving force and has been widely adopted in many domains and applications with competitive performance. In practice, to solve the nontrivial and complicated tasks in real-world applications, DL is often not used standalone, but instead contributes as a piece of gadget of a larger complex AI system. Although there comes a fast increasing trend to study the quality issues of deep neural networks (DNNs) at the model level, few studies have been performed to investigate the quality of DNNs at both the unit level and the potential impacts on the system level. More importantly, it also lacks systematic investigation on how to perform the risk assessment for AI systems from unit level to system level. To bridge this gap, this paper initiates an early exploratory study of AI system risk assessment from both the data distribution and uncertainty angles to address these issues. We propose a general framework with an exploratory study for analyzing AI systems. After large-scale (700+ experimental configurations and 5000+ GPU hours) experiments and in-depth investigations, we reached a few key interesting findings that highlight the practical need and opportunities for more in-depth investigations into AI systems.
translated by 谷歌翻译
The deep learning community has witnessed an exponentially growing interest in self-supervised learning (SSL). However, it still remains unexplored how to build a framework for learning useful representations of raw music waveforms in a self-supervised manner. In this work, we design Music2Vec, a framework exploring different SSL algorithmic components and tricks for music audio recordings. Our model achieves comparable results to the state-of-the-art (SOTA) music SSL model Jukebox, despite being significantly smaller with less than 2% of parameters of the latter. The model will be released on Huggingface(Please refer to: https://huggingface.co/m-a-p/music2vec-v1)
translated by 谷歌翻译
We present a novel method to provide efficient and highly detailed reconstructions. Inspired by wavelets, our main idea is to learn a neural field that decompose the signal both spatially and frequency-wise. We follow the recent grid-based paradigm for spatial decomposition, but unlike existing work, encourage specific frequencies to be stored in each grid via Fourier features encodings. We then apply a multi-layer perceptron with sine activations, taking these Fourier encoded features in at appropriate layers so that higher-frequency components are accumulated on top of lower-frequency components sequentially, which we sum up to form the final output. We demonstrate that our method outperforms the state of the art regarding model compactness and efficiency on multiple tasks: 2D image fitting, 3D shape reconstruction, and neural radiance fields.
translated by 谷歌翻译
Recent years have witnessed an astonishing explosion in the evolution of mobile applications powered by AI technologies. The rapid growth of AI frameworks enables the transition of AI technologies to mobile devices, significantly prompting the adoption of AI apps (i.e., apps that integrate AI into their functions) among smartphone devices. In this paper, we conduct the most extensive empirical study on 56,682 published AI apps from three perspectives: dataset characteristics, development issues, and user feedback and privacy. To this end, we build an automated AI app identification tool, AI Discriminator, that detects eligible AI apps from 7,259,232 mobile apps. First, we carry out a dataset analysis, where we explore the AndroZoo large repository to identify AI apps and their core characteristics. Subsequently, we pinpoint key issues in AI app development (e.g., model protection). Finally, we focus on user reviews and user privacy protection. Our paper provides several notable findings. Some essential ones involve revealing the issue of insufficient model protection by presenting the lack of model encryption, and demonstrating the risk of user privacy data being leaked. We published our large-scale AI app datasets to inspire more future research.
translated by 谷歌翻译
The Modboat is a low-cost, underactuated, modular robot capable of surface swimming, docking to other modules, and undocking from them using only a single motor and two passive flippers. Undocking is achieved by causing intentional self-collision between the tails of neighboring modules in certain configurations; this becomes a challenge, however, when collective swimming as one connected component is desirable. Prior work has developed controllers that turn arbitrary configurations of docked Modboats into steerable vehicles, but they cannot counteract lateral forces and disturbances. In this work we present a centralized control strategy to create holonomic vehicles out of arbitrary configurations of docked Modboats using an iterative potential-field based search. We experimentally demonstrate that our controller performs well and can control surge and sway velocities and yaw angle simultaneously.
translated by 谷歌翻译
In this paper, we propose a novel multi-modal multi-task encoder-decoder pre-training framework (MMSpeech) for Mandarin automatic speech recognition (ASR), which employs both unlabeled speech and text data. The main difficulty in speech-text joint pre-training comes from the significant difference between speech and text modalities, especially for Mandarin speech and text. Unlike English and other languages with an alphabetic writing system, Mandarin uses an ideographic writing system where character and sound are not tightly mapped to one another. Therefore, we propose to introduce the phoneme modality into pre-training, which can help capture modality-invariant information between Mandarin speech and text. Specifically, we employ a multi-task learning framework including five self-supervised and supervised tasks with speech and text data. For end-to-end pre-training, we introduce self-supervised speech-to-pseudo-codes (S2C) and phoneme-to-text (P2T) tasks utilizing unlabeled speech and text data, where speech-pseudo-codes pairs and phoneme-text pairs are a supplement to the supervised speech-text pairs. To train the encoder to learn better speech representation, we introduce self-supervised masked speech prediction (MSP) and supervised phoneme prediction (PP) tasks to learn to map speech into phonemes. Besides, we directly add the downstream supervised speech-to-text (S2T) task into the pre-training process, which can further improve the pre-training performance and achieve better recognition results even without fine-tuning. Experiments on AISHELL-1 show that our proposed method achieves state-of-the-art performance, with a more than 40% relative improvement compared with other pre-training methods.
translated by 谷歌翻译
对于单眼360图像,深度估计是一个具有挑战性的,因为失真沿纬度增加。为了感知失真,现有方法致力于设计深层且复杂的网络体系结构。在本文中,我们提供了一种新的观点,该视角为360图像构建了可解释且稀疏的表示形式。考虑到几何结构在深度估计中的重要性,我们利用Contourlet变换来捕获光谱域中的显式几何提示,并将其与空间域中的隐含提示集成在一起。具体而言,我们提出了一个由卷积神经网络和Contourlet变换分支组成的神经轮廓网络。在编码器阶段,我们设计了一个空间光谱融合模块,以有效融合两种类型的提示。与编码器相反,我们采用了逆向方形变换,并通过学习的低通子带和带通道的定向子带来构成解码器中的深度。在三个流行的全景图像数据集上进行的实验表明,所提出的方法的表现优于最先进的方案,其收敛速度更快。代码可在https://github.com/zhijieshen-bjtu/neural-contourlet-network-for-mode上找到。
translated by 谷歌翻译