从侵入性冠状动脉造影(ICA)中准确提取冠状动脉(ICA)在临床决策中对于冠状动脉疾病的诊断和风险分层(CAD)很重要。在这项研究中,我们开发了一种使用深度学习来自动提取冠状动脉腔的方法。方法。提出了一个深度学习模型U-NET 3+,其中包含了全面的跳过连接和深度监督,以自动从ICAS中自动提取冠状动脉。在这个新型的冠状动脉提取框架中采用了转移学习和混合损失功能。结果。使用了一个包含从210名患者获得的616个ICA的数据集。在技​​术评估中,U-NET 3+的骰子得分为0.8942,灵敏度为0.8735,高于U-NET ++(骰子得分:0.8814:0.8814,灵敏度为0.8331)和U-net(骰子分数) :0.8799,灵敏度为0.8305)。结论。我们的研究表明,U-NET 3+优于其他分割框架,用于自动从ICA中提取冠状动脉。该结果表明了临床使用的巨大希望。
translated by 谷歌翻译
目前全面监督的面部地标检测方法迅速进行,实现了显着性能。然而,当在大型姿势和重闭合的面孔和重闭合时仍然遭受痛苦,以进行不准确的面部形状约束,并且标记的训练样本不足。在本文中,我们提出了一个半监督框架,即自我校准的姿势注意网络(SCPAN),以实现更具挑战性的情景中的更强大和精确的面部地标检测。具体地,建议通过定影边界和地标强度场信息来模拟更有效的面部形状约束的边界意识的地标强度(BALI)字段。此外,设计了一种自我校准的姿势注意力(SCPA)模型,用于提供自学习的目标函数,该功能通过引入自校准机制和姿势注意掩模而无需标签信息而无需标签信息。我们认为,通过将巴厘岛领域和SCPA模型集成到新颖的自我校准的姿势网络中,可以了解更多的面部现有知识,并且我们的面孔方法的检测精度和稳健性得到了改善。获得具有挑战性的基准数据集获得的实验结果表明,我们的方法优于文献中最先进的方法。
translated by 谷歌翻译
场景图是一个场景的结构化表示,可以清楚地表达场景中对象之间的对象,属性和关系。随着计算机视觉技术继续发展,只需检测和识别图像中的对象,人们不再满足。相反,人们期待着对视觉场景更高的理解和推理。例如,给定图像,我们希望不仅检测和识别图像中的对象,还要知道对象之间的关系(视觉关系检测),并基于图像内容生成文本描述(图像标题)。或者,我们可能希望机器告诉我们图像中的小女孩正在做什么(视觉问题应答(VQA)),甚至从图像中移除狗并找到类似的图像(图像编辑和检索)等。这些任务需要更高水平的图像视觉任务的理解和推理。场景图只是场景理解的强大工具。因此,场景图引起了大量研究人员的注意力,相关的研究往往是跨模型,复杂,快速发展的。然而,目前没有对场景图的相对系统的调查。为此,本调查对现行场景图研究进行了全面调查。更具体地说,我们首先总结了场景图的一般定义,随后对场景图(SGG)和SGG的发电方法进行了全面和系统的讨论,借助于先验知识。然后,我们调查了场景图的主要应用,并汇总了最常用的数据集。最后,我们对场景图的未来发展提供了一些见解。我们相信这将是未来研究场景图的一个非常有帮助的基础。
translated by 谷歌翻译
时尚预测学习(ST-PL)是具有许多应用的热点,例如物体运动和气象预测。它旨在通过观察到的序列来预测后续帧。然而,连续框架中固有的不确定性加剧了长期预测的难度。为了解决预测期间增加的歧义,我们设计CMS-LSTM,专注于上下文相关性和多尺度的时空流,详细含有两种精细植入的本地,其中包含两个精心设计的块:上下文嵌入(CE)和时尚表达(SE)块。 CE专为丰富的上下文互动而设计,而SE专注于隐藏状态的多尺度时空表达。新引入的块还促进了其他时空模型(例如,PEIPrn,SA-COMMLSTM),以产生ST-PL的代表性隐式特征,提高预测质量。定性和定量实验证明了我们所提出的方法的有效性和灵活性。具有较少的参数,CMS-LSTM在两个代表性基准和场景上的指标中占据了最先进的方法。
translated by 谷歌翻译
With the ever-growing model size and the limited availability of labeled training data, transfer learning has become an increasingly popular approach in many science and engineering domains. For classification problems, this work delves into the mystery of transfer learning through an intriguing phenomenon termed neural collapse (NC), where the last-layer features and classifiers of learned deep networks satisfy: (i) the within-class variability of the features collapses to zero, and (ii) the between-class feature means are maximally and equally separated. Through the lens of NC, our findings for transfer learning are the following: (i) when pre-training models, preventing intra-class variability collapse (to a certain extent) better preserves the intrinsic structures of the input data, so that it leads to better model transferability; (ii) when fine-tuning models on downstream tasks, obtaining features with more NC on downstream data results in better test accuracy on the given task. The above results not only demystify many widely used heuristics in model pre-training (e.g., data augmentation, projection head, self-supervised learning), but also leads to more efficient and principled fine-tuning method on downstream tasks that we demonstrate through extensive experimental results.
translated by 谷歌翻译
The past few years have seen rapid progress in combining reinforcement learning (RL) with deep learning. Various breakthroughs ranging from games to robotics have spurred the interest in designing sophisticated RL algorithms and systems. However, the prevailing workflow in RL is to learn tabula rasa, which may incur computational inefficiency. This precludes continuous deployment of RL algorithms and potentially excludes researchers without large-scale computing resources. In many other areas of machine learning, the pretraining paradigm has shown to be effective in acquiring transferable knowledge, which can be utilized for a variety of downstream tasks. Recently, we saw a surge of interest in Pretraining for Deep RL with promising results. However, much of the research has been based on different experimental settings. Due to the nature of RL, pretraining in this field is faced with unique challenges and hence requires new design principles. In this survey, we seek to systematically review existing works in pretraining for deep reinforcement learning, provide a taxonomy of these methods, discuss each sub-field, and bring attention to open problems and future directions.
translated by 谷歌翻译
标记医学图像取决于专业知识,因此很难在短时间内以高质量获取大量注释的医学图像。因此,在小型数据集中充分利用有限标记的样品来构建高性能模型是医疗图像分类问题的关键。在本文中,我们提出了一个深入监督的层选择性注意网络(LSANET),该网络全面使用功能级和预测级监督中的标签信息。对于特征级别的监督,为了更好地融合低级功能和高级功能,我们提出了一个新颖的视觉注意模块,层选择性注意(LSA),以专注于不同层的特征选择。 LSA引入了一种权重分配方案,该方案可以在整个训练过程中动态调整每个辅助分支的加权因子,以进一步增强深入监督的学习并确保其概括。对于预测级的监督,我们采用知识协同策略,通过成对知识匹配来促进所有监督分支之间的层次信息互动。使用公共数据集MedMnist,这是用于涵盖多种医学专业的生物医学图像分类的大规模基准,我们评估了LSANET在多个主流CNN体系结构和各种视觉注意模块上评估。实验结果表明,我们所提出的方法对其相应的对应物进行了实质性改进,这表明LSANET可以为医学图像分类领域的标签有效学习提供有希望的解决方案。
translated by 谷歌翻译
在本文中,我们研究了从许多嘈杂的随机线性测量值中恢复低级别基质的问题。我们考虑以下设置的设置,即基地矩阵的等级是未知的,并使用矩阵变量的过度指定的分组表示,其中全局最佳解决方案过拟合,并且与基础基础真相不符。然后,我们使用梯度下降和小的随机初始化解决了相关的非凸问题。我们表明,只要测量运算符能够满足受限的等轴测特性(RIP),其等级参数缩放具有地面真相矩阵等级,而不是使用过度指定的矩阵变量进行缩放,那么梯度下降迭代就会在特定的轨迹上朝向地面。 - 正确矩阵并在适当停止时获得了几乎信息理论上的最佳恢复。然后,我们提出了一种基于共同持有方法的有效的早期停止策略,并表明它可以检测到几乎最佳的估计量。此外,实验表明,所提出的验证方法也可以有效地用于图像恢复,并具有深层图像先验,从而使图像过度参与了深层网络。
translated by 谷歌翻译
当训练过度参数化的深网以进行分类任务时,已经广泛观察到,学到的功能表现出所谓的“神经崩溃”现象。更具体地说,对于倒数第二层的输出特征,对于每个类,课堂内特征会收敛到其平均值,而不同类别的手段表现出一定的紧密框架结构,这也与最后一层的分类器对齐。由于最后一层的特征归一化成为现代表示学习中的一种常见实践,因此,在这项工作中,我们从理论上证明了归一化特征的神经崩溃现象是合理的。基于不受约束的特征模型,我们通过限制球体上的所有特征和分类器来简化多级分类任务中的经验损失函数。在这种情况下,我们分析了riemannian优化问题在球体的产物上的非概念景观,从而显示出良性的全球景观,因为唯一的全球最小化器是神经崩溃的解决方案,而所有其他关键点是严格的鞍座。实用深网的实验结果证实了我们的理论,并证明可以通过特征归一化更快地学习更好的表示。
translated by 谷歌翻译
基于DNN的框架插值从两个连续的帧中生成中间帧,通常取决于具有大量功能的模型体系结构,从而阻止其在具有有限资源的系统(例如移动设备)上部署。我们提出了一种用于框架插值的压缩驱动的网络设计,该设计通过稀疏性诱导优化来利用模型,以大大降低模型大小,同时达到更高的性能。具体而言,我们首先压缩了最近提出的ADACOF模型,并证明了10次压缩ADACOF的性能类似于其原始对应物,在各种超参数设置下,对使用layerwise稀疏信息作为指导的不同策略进行了全面研究。然后,我们通过引入一个多分辨率翘曲模块来增强这种压缩模型,从而提高了视觉一致性,并通过多层次的细节来提高视觉一致性。结果,我们通过原始AdaCof的四分之一获得了可观的性能增长。此外,我们的模型在各种数据集上对其他最先进的方法都表现出色。我们注意到,建议的压缩驱动框​​架是通用的,可以轻松地传输到其他基于DNN的框架插值算法中。源代码可在https://github.com/tding1/cdfi上获得。
translated by 谷歌翻译