科学文献是高质量的语料库,支持大量自然语言处理(NLP)研究。但是,现有数据集围绕英语,这限制了中国科学NLP的发展。在这项工作中,我们提出了CSL,这是一个大规模的中国科学文献数据集,其中包含396K论文的标题,摘要,关键字和学术领域。据我们所知,CSL是中文中的第一个科学文档数据集。 CSL可以用作中国语料库。同样,该半结构化数据是一种自然注释,可以构成许多监督的NLP任务。基于CSL,我们提出了一个基准,以评估跨科学领域任务的模型的性能,即摘要,关键字生成和文本分类。我们分析了现有文本到文本模型在评估任务上的行为,并揭示了中国科学NLP任务的挑战,该任务为未来的研究提供了宝贵的参考。数据和代码可在https://github.com/ydli-ai/csl上找到
translated by 谷歌翻译
当在具有不同分布的数据集上不断学习时,神经网络往往会忘记以前学习的知识,这一现象被称为灾难性遗忘。数据集之间的分配更改会导致更多的遗忘。最近,基于参数 - 隔离的方法在克服遗忘时具有巨大的潜力。但是,当他们在培训过程中修复每个数据集的神经路径时,他们的概括不佳,并且在推断过程中需要数据集标签。此外,他们不支持向后的知识转移,因为它们优先于过去的数据。在本文中,我们提出了一种名为ADAPTCL的新的自适应学习方法,该方法完全重复使用并在学习的参数上生长,以克服灾难性的遗忘,并允许在不需要数据集标签的情况下进行积极的向后传输。我们提出的技术通过允许最佳的冷冻参数重复使用在相同的神经路径上生长。此外,它使用参数级数据驱动的修剪来为数据分配同等优先级。我们对MNIST变体,域和食物新鲜度检测数据集进行了广泛的实验,而无需数据集标签。结果表明,我们所提出的方法优于替代基线,可以最大程度地减少遗忘和实现积极的向后知识转移。
translated by 谷歌翻译
由于患病患者经常患贫血或凝血病,因此血液产物的输血是重症监护病房(ICU)的经常干预。但是,医生做出的不当输血决定通常与并发症的风险增加和医院成本更高有关。在这项工作中,我们旨在开发一种决策支持工具,该工具使用可用的患者信息来对三种常见的血液产品(红细胞,血小板和新鲜的冷冻血浆)进行输血决策。为此,我们采用了单批批处理增强学习(RL)算法,即离散的批处理约束Q学习,以确定观察到的患者轨迹的最佳动作(输血)。同时,我们考虑了不同的国家表示方法和奖励设计机制,以评估其对政策学习的影响。实验是在两个现实世界中的重症监护数据集上进行的:MIMIC-III和UCSF。结果表明,关于输血的政策建议通过准确性和对模拟III数据集的加权重要性评估进行了与真实医院政策的可比匹配。此外,数据筛选UCSF数据集的转移学习(TL)和RL的组合可以在准确性方面可提供高达$ 17.02%的提高,而跳跃和渐近性绩效提高了18.94%和21.63%加权重要性采样在三个输血任务上平均。最后,对输血决策的模拟表明,转移的RL政策可以将患者估计的28天死亡率降低2.74%,而UCSF数据集的敏锐度率降低了1.18%。
translated by 谷歌翻译
打开世界对象检测(OWOD),模拟知识持续增长的真正动态世界,试图检测已知和未知的类别,并逐步学习所识别的未知组。我们发现,尽管以前的欧瓦德工作建设性地提出了OWOD定义,但实验设置与不合逻辑的基准,令人困惑的度量计算和不当方法是不合理的。在本文中,我们重新思考OWOD实验环境,并提出了五项基本基准原则,以指导OWOD基准建设。此外,我们设计了两个特定于OWOD问题的公平评估协议,从未知课程的角度填充了评估的空白。此外,我们介绍了一个新颖且有效的OWOD框架,其中包含辅助提案顾问(PAD)和特定于类驱逐分类器(CEC)。非参数垫可以帮助RPN识别无需监控的准确未知提案,而CEC通过特定于类的驱逐函数校准过自信的激活边界并滤除令人困惑的预测。在我们的公平基准上进行的综合实验表明,我们的方法在现有的和我们的新指标方面表明了其他最先进的对象检测方法。\脚注{我们的基准和代码可在https://github.com提供/重新驱动/重新驱动。
translated by 谷歌翻译
The ''Propose-Test-Release'' (PTR) framework is a classic recipe for designing differentially private (DP) algorithms that are data-adaptive, i.e. those that add less noise when the input dataset is nice. We extend PTR to a more general setting by privately testing data-dependent privacy losses rather than local sensitivity, hence making it applicable beyond the standard noise-adding mechanisms, e.g. to queries with unbounded or undefined sensitivity. We demonstrate the versatility of generalized PTR using private linear regression as a case study. Additionally, we apply our algorithm to solve an open problem from ''Private Aggregation of Teacher Ensembles (PATE)'' -- privately releasing the entire model with a delicate data-dependent analysis.
translated by 谷歌翻译
Image token removal is an efficient augmentation strategy for reducing the cost of computing image features. However, this efficient augmentation strategy has been found to adversely affect the accuracy of CLIP-based training. We hypothesize that removing a large portion of image tokens may improperly discard the semantic content associated with a given text description, thus constituting an incorrect pairing target in CLIP training. To address this issue, we propose an attentive token removal approach for CLIP training, which retains tokens with a high semantic correlation to the text description. The correlation scores are computed in an online fashion using the EMA version of the visual encoder. Our experiments show that the proposed attentive masking approach performs better than the previous method of random token removal for CLIP training. The approach also makes it efficient to apply multiple augmentation views to the image, as well as introducing instance contrastive learning tasks between these views into the CLIP framework. Compared to other CLIP improvements that combine different pre-training targets such as SLIP and MaskCLIP, our method is not only more effective, but also much more efficient. Specifically, using ViT-B and YFCC-15M dataset, our approach achieves $43.9\%$ top-1 accuracy on ImageNet-1K zero-shot classification, as well as $62.7/42.1$ and $38.0/23.2$ I2T/T2I retrieval accuracy on Flickr30K and MS COCO, which are $+1.1\%$, $+5.5/+0.9$, and $+4.4/+1.3$ higher than the SLIP method, while being $2.30\times$ faster. An efficient version of our approach running $1.16\times$ faster than the plain CLIP model achieves significant gains of $+5.3\%$, $+11.3/+8.0$, and $+9.5/+4.9$ on these benchmarks.
translated by 谷歌翻译
Full-body reconstruction is a fundamental but challenging task. Owing to the lack of annotated data, the performances of existing methods are largely limited. In this paper, we propose a novel method named Full-body Reconstruction from Part Experts~(FuRPE) to tackle this issue. In FuRPE, the network is trained using pseudo labels and features generated from part-experts. An simple yet effective pseudo ground-truth selection scheme is proposed to extract high-quality pseudo labels. In this way, a large-scale of existing human body reconstruction datasets can be leveraged and contribute to the model training. In addition, an exponential moving average training strategy is introduced to train the network in a self-supervised manner, further boosting the performance of the model. Extensive experiments on several widely used datasets demonstrate the effectiveness of our method over the baseline. Our method achieves the state-of-the-art performance. Code will be publicly available for further research.
translated by 谷歌翻译
In recent years, applying deep learning (DL) to assess structural damages has gained growing popularity in vision-based structural health monitoring (SHM). However, both data deficiency and class-imbalance hinder the wide adoption of DL in practical applications of SHM. Common mitigation strategies include transfer learning, over-sampling, and under-sampling, yet these ad-hoc methods only provide limited performance boost that varies from one case to another. In this work, we introduce one variant of the Generative Adversarial Network (GAN), named the balanced semi-supervised GAN (BSS-GAN). It adopts the semi-supervised learning concept and applies balanced-batch sampling in training to resolve low-data and imbalanced-class problems. A series of computer experiments on concrete cracking and spalling classification were conducted under the low-data imbalanced-class regime with limited computing power. The results show that the BSS-GAN is able to achieve better damage detection in terms of recall and $F_\beta$ score than other conventional methods, indicating its state-of-the-art performance.
translated by 谷歌翻译
In recent years, there is a surge of generation-based information extraction work, which allows a more direct use of pre-trained language models and efficiently captures output dependencies. However, previous generative methods using lexical representation do not naturally fit document-level relation extraction (DocRE) where there are multiple entities and relational facts. In this paper, we investigate the root cause of the underwhelming performance of the existing generative DocRE models and discover that the culprit is the inadequacy of the training paradigm, instead of the capacities of the models. We propose to generate a symbolic and ordered sequence from the relation matrix which is deterministic and easier for model to learn. Moreover, we design a parallel row generation method to process overlong target sequences. Besides, we introduce several negative sampling strategies to improve the performance with balanced signals. Experimental results on four datasets show that our proposed method can improve the performance of the generative DocRE models. We have released our code at https://github.com/ayyyq/DORE.
translated by 谷歌翻译
In split machine learning (ML), different partitions of a neural network (NN) are executed by different computing nodes, requiring a large amount of communication cost. To ease communication burden, over-the-air computation (OAC) can efficiently implement all or part of the computation at the same time of communication. Based on the proposed system, the system implementation over wireless network is introduced and we provide the problem formulation. In particular, we show that the inter-layer connection in a NN of any size can be mathematically decomposed into a set of linear precoding and combining transformations over MIMO channels. Therefore, the precoding matrix at the transmitter and the combining matrix at the receiver of each MIMO link, as well as the channel matrix itself, can jointly serve as a fully connected layer of the NN. The generalization of the proposed scheme to the conventional NNs is also introduced. Finally, we extend the proposed scheme to the widely used convolutional neural networks and demonstrate its effectiveness under both the static and quasi-static memory channel conditions with comprehensive simulations. In such a split ML system, the precoding and combining matrices are regarded as trainable parameters, while MIMO channel matrix is regarded as unknown (implicit) parameters.
translated by 谷歌翻译