基于有效干预措施的早期疾病检测和预防方法正在引起人们的注意。机器学习技术通过捕获多元数据中的个体差异来实现精确的疾病预测。精确医学的进展表明,在个人层面的健康数据中存在实质性异质性,并且复杂的健康因素与慢性疾病的发展有关。但是,由于多种生物标志物之间的复杂关系,确定跨疾病发作过程中的个体生理状态变化仍然是一个挑战。在这里,我们介绍了健康疾病阶段图(HDPD),它通过可视化在疾病进展过程早期波动的多种生物标志物的边界值来代表个人健康状态。在HDPD中,未来的发作预测是通过扰动多个生物标志物值的情况来表示的,同时考虑变量之间的依赖性。我们从3,238个个体的纵向健康检查队列中构建了11种非传染性疾病(NCD)的HDPD,其中包括3,215个测量项目和遗传数据。 HDPD中非发病区域的生物标志物值的改善显着阻止了11个NCD中的7个未来的疾病发作。我们的结果表明,HDPD可以在发作过程中代表单个生理状态,并用作预防疾病的干预目标。
translated by 谷歌翻译
Classification bandits are multi-armed bandit problems whose task is to classify a given set of arms into either positive or negative class depending on whether the rate of the arms with the expected reward of at least h is not less than w for given thresholds h and w. We study a special classification bandit problem in which arms correspond to points x in d-dimensional real space with expected rewards f(x) which are generated according to a Gaussian process prior. We develop a framework algorithm for the problem using various arm selection policies and propose policies called FCB and FTSV. We show a smaller sample complexity upper bound for FCB than that for the existing algorithm of the level set estimation, in which whether f(x) is at least h or not must be decided for every arm's x. Arm selection policies depending on an estimated rate of arms with rewards of at least h are also proposed and shown to improve empirical sample complexity. According to our experimental results, the rate-estimation versions of FCB and FTSV, together with that of the popular active learning policy that selects the point with the maximum variance, outperform other policies for synthetic functions, and the version of FTSV is also the best performer for our real-world dataset.
translated by 谷歌翻译