我们研究保形预测的鲁棒性,这是标记噪声的不确定性定量的强大工具。我们的分析解决了回归和分类问题,表征了何时以及如何构建正确覆盖未观察到的无噪音地面真相标签的不确定性集。通过风格化的理论示例和实际实验,我们认为天真的保形预测涵盖了无噪声的地面真相标签,除非噪声分布是对手设计的。这使我们相信,除了病理数据分布或噪声源外,对标签噪声的纠正是不必要的。在这种情况下,我们还可以在保形预测算法中校正有界大小的噪声,以确保在没有得分或数据规律性的情况下正确覆盖地面真相标签。
translated by 谷歌翻译
任何稀疏编码方法的最终目标是从几个嘈杂的线性测量值(一个未知的稀疏向量)中准确恢复。不幸的是,这个估计问题通常是NP-HARD,因此始终采用近似方法(例如Lasso或正交匹配的追踪)来接近它,从而使准确性以较小的计算复杂性进行了交易。在本文中,我们为稀疏编码开发了一种量子启发的算法,前提是,与经典近似方法相比,量子计算机和ISING机器的出现可能会导致更准确的估计。为此,我们将最一般的稀疏编码问题作为二次不受约束的二进制优化(QUBO)任务提出,可以使用量子技术有效地最小化。为了在旋转数量(空间复杂性)方面也有效地得出QUBO模型,我们将分析分为三种不同的情况。这些由表达基础稀疏向量所需的位数来定义:二进制,2位和一般的定点表示。我们使用有关Lightsolver量子启发的数字平台的模拟数据进行数值实验,以验证我们的QUBO公式的正确性,并证明其优于基线方法的优势。
translated by 谷歌翻译
计算机视觉中有意义的不确定性量化需要有关语义信息的推理 - 例如,照片中的人的头发颜色或街上汽车的位置。为此,最近在生成建模方面的突破使我们能够在分离的潜在空间中代表语义信息,但是在语义潜在变量上提供不确定性仍然具有挑战性。在这项工作中,我们提供了原则上的不确定性间隔,这些间隔可保证为任何潜在的生成模型包含真正的语义因素。该方法执行以下操作:(1)它使用分位数回归来输出潜在空间中每个元素的启发式不确定性间隔(2)校准了这些不确定性,以使它们包含新的,看不见的输入的潜在值。然后可以通过发电机传播这些校准间隔的终点,以为每个语义因素产生可解释的不确定性可视化。该技术可靠地传达了语义上有意义的,有原则和实例自适应的不确定性,例如图像超分辨率和图像完成。
translated by 谷歌翻译
机器学习模型,尤其是人工神经网络,越来越多地用于为在各个领域的高风险场景中(从金融服务,公共安全和医疗保健服务)提供信息。尽管神经网络在许多情况下都取得了出色的性能,但它们的复杂性质引起了人们对现实情况下的可靠性,可信赖性和公平性的关注。结果,已经提出了几种A-tostori解释方法来突出影响模型预测的特征。值得注意的是,Shapley的价值 - 一种满足几种理想特性的游戏理论数量 - 在机器学习解释性文献中获得了知名度。然而,更传统上,在统计学习中的特征是通过有条件独立性正式化的,而对其进行测试的标准方法是通过有条件的随机测试(CRT)。到目前为止,有关解释性和特征重要性的这两个观点已被认为是独特的和独立的。在这项工作中,我们表明基于沙普利的解释方法和针对特征重要性的有条件独立性测试密切相关。更确切地说,我们证明,通过类似于CRT的程序实现了一组特定的条件独立性测试,评估了Shapley系数量,以执行特定的条件独立性测试,但用于不同的零假设。此外,获得的游戏理论值上限限制了此类测试的$ p $值。结果,我们授予大型Shapley系数具有精确的统计意义,并具有控制I型错误。
translated by 谷歌翻译
Model-X条件随机测试是有条件独立性测试的通用框架,解锁了新的可能性,以发现与感兴趣的响应有条件相关的特征,同时控制I型错误率。该测试的一个吸引力的优势是,它可以与任何机器学习模型一起使用来设计强大的测试统计数据。反过来,Model-X文献中的常见实践是使用机器学习模型形成测试统计量,经过培训,以最大程度地提高预测精度,希望能够获得良好的功率测试。但是,这里的理想目标是推动模型(在训练期间)以最大程度地提高测试功能,而不仅仅是预测精度。在本文中,我们通过首次引入新型模型拟合方案来弥合这一差距,这些方案旨在明确提高Model-X测试的功能。这是通过引入新的成本函数来完成的,该功能旨在最大化用于衡量有条件独立性违反的测试统计量。使用合成和真实的数据集,我们证明了我们提出的损失函数与各种基本预测模型(Lasso,弹性网和深神经网络)的组合始终增加所获得的正确发现的数量,同时维持I型错误率下的I型错误率控制。
translated by 谷歌翻译
分位数回归(QR)是一个强大的工具,用于估计目标变量$ \ mathrm {y} $的一个或多个条件分位数给定的解释功能$ \ boldsymbol {\ mathrm {x}}} $。 QR的一个限制是,由于其目标函数的提出,它仅针对标量目标变量定义,并且由于分位数的概念对多元分布没有标准定义。最近,由于通过最佳传输将分位数概念对多变量分布的有意义的概括,提出了矢量分位数回归(VQR)作为矢量值目标变量的QR扩展。尽管它优雅,但VQR可以说是由于几个限制而在实践中不适用:(i)假设目标$ \ boldsymbol {\ mathrm {y}} $给定功能$ \ boldsymbol {\ mathrm {\ mathrm {\ mathrm {\ mathrm { {x}} $; (ii)即使在目标维度,回归分位数或特征数量的数量方面,它的确切配方也是棘手的,即使对于适度的问题,并且其放松的双重配方可能违反了估计的分位数的单调性; (iii)当前不存在VQR的快速或可扩展求解器。在这项工作中,我们完全解决了这些局限性,即:(i)将VQR扩展到非线性情况,显示出对线性VQR的实质性改进; (ii)我们提出{矢量单调重排},该方法可确保VQR估计的分位数函数是单调函数; (iii)我们为线性和非线性VQR提供快速的GPU加速求解器,这些求解器保持固定的内存足迹,并证明它们扩展到数百万个样品和数千个分位数; (iv)我们发布了求解器的优化Python软件包,以广泛使用VQR在现实世界应用中的使用。
translated by 谷歌翻译
我们开发了一个框架,用于在线环境中使用有效的覆盖范围保证构建不确定性集,其中基础数据分布可以急剧(甚至对手)随着时间的推移而发生巨大变化。我们提出的技术非常灵活,因为它可以与任何在线学习算法集成,需要最低限度的实施工作和计算成本。我们方法比现有替代方案的关键优势(也基于共形推断)是我们不需要将数据分为培训和保持校准集。这使我们能够以完全在线的方式拟合预测模型,并利用最新的观察结果来构建校准的不确定性集。因此,与现有技术相反,(i)我们构建的集合可以迅速适应分布的新变化; (ii)我们的过程不需要在每个时间步骤进行改装。使用合成和现实世界的基准数据集,我们证明了理论的有效性以及提案对现有技术的提高绩效。为了证明所提出的方法的更大灵活性,我们展示了如何为多出输出回归问题构造有效的间隔,而以前的顺序校准方法由于不切实际的计算和内存需求而无法处理。
translated by 谷歌翻译
Deep neural networks are powerful tools to detect hidden patterns in data and leverage them to make predictions, but they are not designed to understand uncertainty and estimate reliable probabilities. In particular, they tend to be overconfident. We begin to address this problem in the context of multi-class classification by developing a novel training algorithm producing models with more dependable uncertainty estimates, without sacrificing predictive power. The idea is to mitigate overconfidence by minimizing a loss function, inspired by advances in conformal inference, that quantifies model uncertainty by carefully leveraging hold-out data. Experiments with synthetic and real data demonstrate this method can lead to smaller conformal prediction sets with higher conditional coverage, after exact calibration with hold-out data, compared to state-of-the-art alternatives.
translated by 谷歌翻译
我们提出了一项新的条件依赖度量和有条件独立性的统计检验。该度量基于在有限位置评估的两个合理分布的分析内嵌入之间的差异。我们在条件独立性的无效假设下获得其渐近分布,并从中设计一致的统计检验。我们进行了一系列实验,表明我们的新测试在I型和类型II误差方面都超过了最先进的方法,即使在高维设置中也是如此。
translated by 谷歌翻译
We develop a method to generate predictive regions that cover a multivariate response variable with a user-specified probability. Our work is composed of two components. First, we use a deep generative model to learn a representation of the response that has a unimodal distribution. Existing multiple-output quantile regression approaches are effective in such cases, so we apply them on the learned representation, and then transform the solution to the original space of the response. This process results in a flexible and informative region that can have an arbitrary shape, a property that existing methods lack. Second, we propose an extension of conformal prediction to the multivariate response setting that modifies any method to return sets with a pre-specified coverage level. The desired coverage is theoretically guaranteed in the finite-sample case for any distribution. Experiments conducted on both real and synthetic data show that our method constructs regions that are significantly smaller compared to existing techniques.
translated by 谷歌翻译