虽然在清澈的天气下,在语义场景的理解中取得了相当大的进展,但由于不完美的观察结果引起的不确定性,在恶劣的天气条件下,仍然是一个艰难的问题。此外,收集和标记有雾图像的困难阻碍了这一领域的进展。考虑到在清晰天气下的语义场景理解中的成功,我们认为从清除图像到雾域中学习的知识是合理的。因此,问题变为弥合清晰图像和有雾图像之间的域间隙。与以往的方法不同,主要关注雾雾型磁盘差距 - 缺陷图像或雾化清晰的图像,我们建议通过同时考虑雾影响和风格变化来缓解域间隙。动机基于我们的发现,通过添加中间结构域,可以分别分别划分和关闭迷雾相关间隙。因此,我们提出了一种新的管道来累积适应风格,雾和双因素(风格和雾)。具体而言,我们设计了一个统一的框架,分别解开风格因子和雾因子,然后是不同域中图像的双因素。此外,我们合作了三种因素的解剖,具有新颖的累积损失,以彻底解解这三个因素。我们的方法在三个基准上实现了最先进的性能,并在多雨和雪景中显示了泛化能力。
translated by 谷歌翻译
In this paper, we study the problem of knowledge-intensive text-to-SQL, in which domain knowledge is necessary to parse expert questions into SQL queries over domain-specific tables. We formalize this scenario by building a new Chinese benchmark KnowSQL consisting of domain-specific questions covering various domains. We then address this problem by presenting formulaic knowledge, rather than by annotating additional data examples. More concretely, we construct a formulaic knowledge bank as a domain knowledge base and propose a framework (ReGrouP) to leverage this formulaic knowledge during parsing. Experiments using ReGrouP demonstrate a significant 28.2% improvement overall on KnowSQL.
translated by 谷歌翻译
This paper illustrates the technologies of user next intent prediction with a concept knowledge graph. The system has been deployed on the Web at Alipay, serving more than 100 million daily active users. Specifically, we propose AlipayKG to explicitly characterize user intent, which is an offline concept knowledge graph in the Life-Service domain modeling the historical behaviors of users, the rich content interacted by users and the relations between them. We further introduce a Transformer-based model which integrates expert rules from the knowledge graph to infer the online user's next intent. Experimental results demonstrate that the proposed system can effectively enhance the performance of the downstream tasks while retaining explainability.
translated by 谷歌翻译
The node-place model has been widely used to classify and evaluate transit stations, which sheds light on individual travel behaviors and supports urban planning through effectively integrating land use and transportation development. This article adapts this model to investigate whether and how node, place, and mobility would be associated with the transmission risks and presences of the local COVID-19 cases in a city. Similar studies on the model and its relevance to COVID-19, according to our knowledge, have not been undertaken before. Moreover, the unique metric drawn from detailed visit history of the infected, i.e., the COVID-19 footprints, is proposed and exploited. This study then empirically uses the adapted model to examine the station-level factors affecting the local COVID-19 footprints. The model accounts for traditional measures of the node and place as well as actual human mobility patterns associated with the node and place. It finds that stations with high node, place, and human mobility indices normally have more COVID-19 footprints in proximity. A multivariate regression is fitted to see whether and to what degree different indices and indicators can predict the COVID-19 footprints. The results indicate that many of the place, node, and human mobility indicators significantly impact the concentration of COVID-19 footprints. These are useful for policy-makers to predict and monitor hotspots for COVID-19 and other pandemics transmission.
translated by 谷歌翻译
Text-to-SQL semantic parsing is an important NLP task, which greatly facilitates the interaction between users and the database and becomes the key component in many human-computer interaction systems. Much recent progress in text-to-SQL has been driven by large-scale datasets, but most of them are centered on English. In this work, we present MultiSpider, the largest multilingual text-to-SQL dataset which covers seven languages (English, German, French, Spanish, Japanese, Chinese, and Vietnamese). Upon MultiSpider, we further identify the lexical and structural challenges of text-to-SQL (caused by specific language properties and dialect sayings) and their intensity across different languages. Experimental results under three typical settings (zero-shot, monolingual and multilingual) reveal a 6.1% absolute drop in accuracy in non-English languages. Qualitative and quantitative analyses are conducted to understand the reason for the performance drop of each language. Besides the dataset, we also propose a simple schema augmentation framework SAVe (Schema-Augmentation-with-Verification), which significantly boosts the overall performance by about 1.8% and closes the 29.5% performance gap across languages.
translated by 谷歌翻译
Practical applications employing deep learning must guarantee inference quality. However, we found that the inference quality of state-of-the-art and state-of-the-practice in practical applications has a long tail distribution. In the real world, many tasks have strict requirements for the quality of deep learning inference, such as safety-critical and mission-critical tasks. The fluctuation of inference quality seriously affects its practical applications, and the quality at the tail may lead to severe consequences. State-of-the-art and state-of-the-practice with outstanding inference quality designed and trained under loose constraints still have poor inference quality under constraints with practical application significance. On the one hand, the neural network models must be deployed on complex systems with limited resources. On the other hand, safety-critical and mission-critical tasks need to meet more metric constraints while ensuring high inference quality. We coin a new term, ``tail quality,'' to characterize this essential requirement and challenge. We also propose a new metric, ``X-Critical-Quality,'' to measure the inference quality under certain constraints. This article reveals factors contributing to the failure of using state-of-the-art and state-of-the-practice algorithms and systems in real scenarios. Therefore, we call for establishing innovative methodologies and tools to tackle this enormous challenge.
translated by 谷歌翻译
Previous computation models either have equivalent abilities in representing all computations but fail to provide primitive operators for programming complex algorithms or lack generalized expression ability to represent newly-added computations. This article presents a unified computation model with generalized expression ability and a concise set of primitive operators for programming high-level algorithms. We propose a unified data abstraction -- Tensor of List, and offer a unified computation model based on Tensor of List, which we call the ToL model (in short, ToL). ToL introduces five atomic computations that can represent any elementary computation by finite composition, ensured with strict formal proof. Based on ToL, we design a pure-functional language -- ToLang. ToLang provides a concise set of primitive operators that can be used to program complex big data and AI algorithms. Our evaluations show ToL has generalized expression ability and a built-in performance indicator, born with a strictly defined computation metric -- elementary operation count (EOPs), consistent with FLOPs within a small error range.
translated by 谷歌翻译
Medical Visual Question Answering (Medical-VQA) aims to answer clinical questions regarding radiology images, assisting doctors with decision-making options. Nevertheless, current Medical-VQA models learn cross-modal representations through residing vision and texture encoders in dual separate spaces, which lead to indirect semantic alignment. In this paper, we propose UnICLAM, a Unified and Interpretable Medical-VQA model through Contrastive Representation Learning with Adversarial Masking. Specifically, to learn an aligned image-text representation, we first establish a unified dual-stream pre-training structure with the gradually soft-parameter sharing strategy. Technically, the proposed strategy learns a constraint for the vision and texture encoders to be close in a same space, which is gradually loosened as the higher number of layers. Moreover, for grasping the semantic representation, we extend the unified Adversarial Masking data augmentation strategy to the contrastive representation learning of vision and text in a unified manner, alleviating the meaningless of the commonly used random mask. Concretely, while the encoder training minimizes the distance between the original feature and the masking feature, the adversarial masking model keeps adversarial learning to conversely maximize the distance. Furthermore, we also intuitively take a further exploration of the unified adversarial masking strategy, which improves the potential ante-hoc interpretability with remarkable performance and efficiency. Experimental results on VQA-RAD and SLAKE public benchmarks demonstrate that UnICLAM outperforms the existing 11 state-of-the-art Medical-VQA models. More importantly, we make an additional discussion about the performance of UnICLAM in diagnosing heart failure, verifying that UnICLAM exhibits superior few-shot adaption performance in practical disease diagnosis.
translated by 谷歌翻译
Machine Translation Quality Estimation (QE) is the task of evaluating translation output in the absence of human-written references. Due to the scarcity of human-labeled QE data, previous works attempted to utilize the abundant unlabeled parallel corpora to produce additional training data with pseudo labels. In this paper, we demonstrate a significant gap between parallel data and real QE data: for QE data, it is strictly guaranteed that the source side is original texts and the target side is translated (namely translationese). However, for parallel data, it is indiscriminate and the translationese may occur on either source or target side. We compare the impact of parallel data with different translation directions in QE data augmentation, and find that using the source-original part of parallel corpus consistently outperforms its target-original counterpart. Moreover, since the WMT corpus lacks direction information for each parallel sentence, we train a classifier to distinguish source- and target-original bitext, and carry out an analysis of their difference in both style and domain. Together, these findings suggest using source-original parallel data for QE data augmentation, which brings a relative improvement of up to 4.0% and 6.4% compared to undifferentiated data on sentence- and word-level QE tasks respectively.
translated by 谷歌翻译
Wearable sensors for measuring head kinematics can be noisy due to imperfect interfaces with the body. Mouthguards are used to measure head kinematics during impacts in traumatic brain injury (TBI) studies, but deviations from reference kinematics can still occur due to potential looseness. In this study, deep learning is used to compensate for the imperfect interface and improve measurement accuracy. A set of one-dimensional convolutional neural network (1D-CNN) models was developed to denoise mouthguard kinematics measurements along three spatial axes of linear acceleration and angular velocity. The denoised kinematics had significantly reduced errors compared to reference kinematics, and reduced errors in brain injury criteria and tissue strain and strain rate calculated via finite element modeling. The 1D-CNN models were also tested on an on-field dataset of college football impacts and a post-mortem human subject dataset, with similar denoising effects observed. The models can be used to improve detection of head impacts and TBI risk evaluation, and potentially extended to other sensors measuring kinematics.
translated by 谷歌翻译