最近的工作引入了该日期,作为深度学习中不确定性建模的一种新方法。Epatet是一个添加到传统神经网络中的小神经网络,它可以共同产生预测分布。尤其是,使用音调可以大大提高多个输入的联合预测的质量,这是神经网络了解其不知道的程度的衡量标准。在本文中,我们检查了在分配变化下是否可以提供类似的优势。我们发现,在ImageNet-A/O/C中,谐调通常可以改善稳健性指标。此外,这些改进比非常大的合奏所提供的改进更为重要,即计算成本较低的数量级。但是,与分配稳定深度学习的杰出问题相比,这些改进相对较小。播集可能是工具箱中的有用工具,但它们远非完整的解决方案。
translated by 谷歌翻译
在机器学习中,代理需要估计不确定性,以有效地探索和适应并做出有效的决策。不确定性估计的一种常见方法维护了模型的合奏。近年来,已经提出了几种用于培训合奏的方法,并且在这些方法的各种成分的重要性方面占上风。在本文中,我们旨在解决已受到质疑的两种成分的好处 - 先前的功能和引导。我们表明,先前的功能可以显着改善整体代理在输入之间的关节预测,如果信噪比在输入之间有所不同,则引导程序为其他好处提供了额外的好处。我们的主张是通过理论和实验结果证明的。
translated by 谷歌翻译
在合成代理与动态场景交互的先决条件中,识别独立移动对象的能力是特别重要的。然而,从应用角度来看,标准相机可能在积极的运动和挑战性的照明条件下显着恶化。相比之下,基于事件的相机作为一类新型的生物启发传感器,提供了应对这些挑战的优势。其快速响应和异步性质使其能够以完全相同的场景动态速率捕获视觉刺激。在本文中,我们呈现了一种级联的两级多模型拟合方法,用于用单眼事件相机识别独立移动的物体(即运动分段问题)。第一级利用了对事件特征的跟踪,并在渐进式多模型拟合方案下解决了特征聚类问题。用生成的运动模型实例初始化,第二级进一步通过时空图形切割方法解决了事件聚类问题。这种组合导致有效和准确的事件明智运动分段,不能单独使用任何一个。实验证明了我们在具有不同运动模式的现实场景中的方法的有效性和多功能性以及未知数量的独立移动物体。
translated by 谷歌翻译
情报依赖于代理商对其不知道的知识。可以根据多个输入的标签的联合预测质量来评估此能力。传统的神经网络缺乏这种能力,并且由于大多数研究都集中在边际预测上,因此这种缺点在很大程度上被忽略了。我们将认知神经网络(ENN)作为模型的界面,代表产生有用的关节预测所需的不确定性。虽然先前的不确定性建模方法(例如贝叶斯神经网络)可以表示为ENN,但这种新界面促进了联合预测和新型体系结构和算法的设计的比较。特别是,我们介绍了Epinet:一种可以补充任何常规神经网络(包括大型模型)的体系结构,并且可以通过适度的增量计算进行培训以估计不确定性。有了Epact,传统的神经网络的表现优于非常大的合奏,包括数百个或更多的颗粒,计算的数量级较低。我们在合成数据,成像网和一些强化学习任务中证明了这种功效。作为这项工作的一部分,我们开放源实验代码。
translated by 谷歌翻译
Normalizing flow is a class of deep generative models for efficient sampling and density estimation. In practice, the flow often appears as a chain of invertible neural network blocks; to facilitate training, existing works have regularized flow trajectories and designed special network architectures. The current paper develops a neural ODE flow network inspired by the Jordan-Kinderleherer-Otto (JKO) scheme, which allows efficient block-wise training of the residual blocks and avoids inner loops of score matching or variational learning. As the JKO scheme unfolds the dynamic of gradient flow, the proposed model naturally stacks residual network blocks one-by-one, reducing the memory load and difficulty of performing end-to-end training of deep flow networks. We also develop adaptive time reparameterization of the flow network with a progressive refinement of the trajectory in probability space, which improves the model training efficiency and accuracy in practice. Using numerical experiments with synthetic and real data, we show that the proposed JKO-iFlow model achieves similar or better performance in generating new samples compared with existing flow and diffusion models at a significantly reduced computational and memory cost.
translated by 谷歌翻译
高斯内核及其传统的正常化(例如,行 - 故事)是评估数据点(通常用于流形学习和聚类的数据点之间的相似性)的流行方法,以及在图形上进行的监督和半监督学习。在许多实际情况下,数据可能会被禁止传统亲和力矩阵正确评估相似性的噪声损坏,尤其是在整个数据中的噪声幅度差异很大的情况下,例如在异性恋或异常值下。在噪声下提供更稳定行为的另一种方法是高斯内核的双随机归一化。在这项工作中,我们在一个环境中研究了这种归一化,在这种情况下,在高维空间中嵌入的低维歧管上的未知密度采样点,并因可能强大的,非相同的分布式,高斯的噪声而损坏。我们建立了双重随机亲和力矩阵的点浓度及其围绕某些种群形式的缩放因素。然后,我们利用这些结果来开发几种用于鲁棒推理的工具。首先,我们得出一个强大的密度估计器,该密度估计器在高维噪声下可以显着优于标准内核密度估计器。其次,我们提供估计噪声幅度的估计量,点式信号幅度以及清洁数据点之间的成对欧几里得距离。最后,我们得出了强大的图形拉普拉斯融合,这些标准差异近似于流行的歧管拉普拉斯人,包括拉普拉斯·贝特拉米操作员,表明可以在高维噪声下恢复歧管的局部几何形状。我们在仿真和实际单细胞RNA-sequering数据中举例说明了我们的结果。在后者中,我们表明我们提出的正常化对与不同细胞类型相关的技术变异性是可靠的。
translated by 谷歌翻译
学习将模型分布与观察到的数据区分开来是统计和机器学习中的一个基本问题,而高维数据仍然是这些问题的挑战性环境。量化概率分布差异的指标(例如Stein差异)在高维度的统计测试中起重要作用。在本文中,我们考虑了一个希望区分未知概率分布和名义模型分布的数据的设置。虽然最近的研究表明,最佳$ l^2 $ regularized Stein评论家等于两个概率分布的分数函数的差异,最多是乘法常数,但我们研究了$ l^2 $正则化的作用,训练神经网络时差异评论家功能。由训练神经网络的神经切线内核理论的激励,我们开发了一种新的分期程序,用于训练时间的正则化重量。这利用了早期培训的优势,同时还可以延迟过度拟合。从理论上讲,我们将训练动态与大的正则重量与在早期培训时间的“懒惰训练”制度的内核回归优化相关联。在模拟的高维分布漂移数据和评估图像数据的生成模型的应用中,证明了分期$ l^2 $正则化的好处。
translated by 谷歌翻译
内元化图亲和力矩阵的双性化归一化为基于图的数据分析中的图形laplacian方法提供了一种替代归一化方案,并且可以通过sinkhorn-knopp(SK)迭代在实践中有效地计算出来。本文证明了双性化标准化图拉普拉斯(Laplacian)与laplacian的融合,当$ n $数据点为i.i.d.从嵌入可能高维空间中的一般$ d $维歧管中取样。在$ n \ to \ infty $和内核带宽$ \ epsilon \ to 0 $的某些联合限制下,图Laplacian操作员的点融合率(2-Norm)被证明为$ O(N^{n^{ -1/(d/2+3)})$在有限的大$ n $上,到log racture,在$ \ epsilon \ sim n^{ - 1/(d/2+3)} $时实现。当歧管数据被异常噪声损坏时,我们从理论上证明了图形laplacian点的一致性,该图与清洁歧管数据的速率匹配到与噪声矢量相互内部产物的界限成比例的附加错误项。我们的分析表明,在本文中考虑的设置下,不是精确的双性化归一化,而是大约将达到相同的一致性率。在分析的激励下,我们提出了一个近似且受约束的矩阵缩放问题,可以通过早期终止的SK迭代来解决,并适用于模拟的歧管数据既干净又具有离群的噪声。数值实验支持我们的理论结果,并显示了双形式归一化图拉普拉斯对异常噪声的鲁棒性。
translated by 谷歌翻译
通过内核矩阵或图形laplacian矩阵代表数据点的光谱方法已成为无监督数据分析的主要工具。在许多应用程序场景中,可以通过神经网络嵌入的光谱嵌入可以在数据样本上进行训练,这为实现自动样本外扩展以及计算可扩展性提供了一种有希望的方法。在Spectralnet的原始论文中采用了这种方法(Shaham等人,2018年),我们称之为Specnet1。当前的论文引入了一种名为SpecNet2的新神经网络方法,以计算光谱嵌入,该方法优化了特征问题的等效目标,并删除了SpecNet1中的正交层。 SpecNet2还允许通过通过梯度公式跟踪每个数据点的邻居来分离图形亲和力矩阵的行采样和列。从理论上讲,我们证明了新的无正交物质目标的任何局部最小化均显示出领先的特征向量。此外,证明了使用基于批处理的梯度下降法的这种新的无正交目标的全局收敛。数值实验证明了在模拟数据和图像数据集上Specnet2的性能和计算效率的提高。
translated by 谷歌翻译
尽管神经网络取得了巨大的经验成功,但对培训程序的理论理解仍然有限,尤其是在为优化问题的非凸性性质而提供测试性能的性能保证时。当前的论文通过简化了凸结构的另一个问题来研究神经网络培训的另一种方法 - 解决单调变异不平等(MVI) - 灵感来自最近的工作(Juditsky&Nemirovsky,2019年)。可以通过计算有效的过程找到对MVI的解决方案,重要的是,这会导致$ \ ell_2 $和$ \ ell _ {\ elfty} $在模型恢复和预测准确性下的性能保证层线性神经网络。此外,我们研究了MVI在训练多层神经网络中的使用,并提出了一种称为\ textit {随机变异不平等}(SVI)的实用算法,并证明了其在训练完全连接的神经网络和图形神经网络(GNN)中的适用性(GNN )(SVI是完全一般的,可用于训练其他类型的神经网络)。与广泛使用的随机梯度下降方法相比,我们证明了SVI的竞争性或更好的性能,涉及各种性能指标的合成和真实网络数据预测任务,尤其是在培训早期阶段提高效率方面。
translated by 谷歌翻译