基于深度学习的视网膜病变分割方法通常需要大量精确的像素注释数据。但是,概述病变区域的圆形或椭圆等粗糙注释的效率可能是像素级注释的六倍。因此,本文提出了一个注释细化网络,以将粗注释转换为像素级分割掩码。我们的主要新颖性是原型学习范式的应用来增强不同数据集或类型病变的概括能力。我们还引入了一个原型称量模块,以处理过度较小的病变的具有挑战性的病例。提出的方法对公开可用的IDRID数据集进行了培训,然后概括为公共DDR和我们的现实世界私人数据集。实验表明,我们的方法显着改善了初始的粗蒙版,并以较大的边缘优于非概率基线。此外,我们证明了原型称量模块在跨数据库和跨阶级设置中的实用性。
translated by 谷歌翻译
为了使婴儿脑瘫(CP)的早期医疗干预,早期诊断出脑损伤至关重要。尽管一般运动评估(GMA)在早期CP检测中显示出令人鼓舞的结果,但它很费力。大多数现有作品都以视频为输入,以对GMA自动化进行烦躁的动作(FMS)分类。这些方法需要对视频进行完整的观察,并且无法本地化包含正常FMS的视频帧。因此,我们提出了一种名为WO-GMA的新颖方法,以在弱监督的在线环境中执行FMS本地化。首先将婴儿体重点作为WO-GMA的输入提取。然后,WO-GMA执行本地时空提取,然后进行两个网络分支,以生成伪夹标签和模型在线操作。凭借剪辑级伪标签,动作建模分支学会以在线方式检测FMS。具有757个不同婴儿视频的数据集上的实验结果表明,WO-GMA可以获得最新的视频级别分类和Cliplevel检测结果。此外,仅需要前20%的视频持续时间才能获得与完全观察到的分类结果,这意味着FMS诊断时间大大缩短了。代码可在以下网址获得:https://github.com/scofiedluo/wo-gma。
translated by 谷歌翻译
视频阴影检测旨在在视频帧之间产生一致的阴影预测。但是,当前的方法遇到了整个框架的阴影预测不一致的,尤其是当视频中的照明和背景纹理发生变化时。我们观察到不一致的预测是由阴影特征不一致引起的,即,同一阴影区域的特征在附近的框架之间显示出不同的礼节。在本文中,我们提出了一种新颖的阴影通信方法(SC-COR)(SC-COR) ),以增强跨帧的特定阴影区域的像素相似性,以进行视频阴影检测。我们提出的SC-COR具有三个主要优势。首先,不需要密集的像素到像素对应标签,SC-COR可以以弱监督的方式学习跨帧的像素对应。其次,SC-COR考虑了阴影内的可分离性,这对视频中的变体纹理和照明是可靠的。最后,SC-COR是一个插件模块,可以轻松地集成到没有额外的计算成本的情况下。我们进一步设计了一个新的评估指标,以评估视频阴影检测结果的时间稳定性。实验结果表明,SC-COR的表现优于先前的最新方法,而IOU的表现为6.51%,而新引入的时间稳定性度量为3.35%。
translated by 谷歌翻译
Surgical phase recognition is a fundamental task in computer-assisted surgery systems. Most existing works are under the supervision of expensive and time-consuming full annotations, which require the surgeons to repeat watching videos to find the precise start and end time for a surgical phase. In this paper, we introduce timestamp supervision for surgical phase recognition to train the models with timestamp annotations, where the surgeons are asked to identify only a single timestamp within the temporal boundary of a phase. This annotation can significantly reduce the manual annotation cost compared to the full annotations. To make full use of such timestamp supervisions, we propose a novel method called uncertainty-aware temporal diffusion (UATD) to generate trustworthy pseudo labels for training. Our proposed UATD is motivated by the property of surgical videos, i.e., the phases are long events consisting of consecutive frames. To be specific, UATD diffuses the single labelled timestamp to its corresponding high confident ( i.e., low uncertainty) neighbour frames in an iterative way. Our study uncovers unique insights of surgical phase recognition with timestamp supervisions: 1) timestamp annotation can reduce 74% annotation time compared with the full annotation, and surgeons tend to annotate those timestamps near the middle of phases; 2) extensive experiments demonstrate that our method can achieve competitive results compared with full supervision methods, while reducing manual annotation cost; 3) less is more in surgical phase recognition, i.e., less but discriminative pseudo labels outperform full but containing ambiguous frames; 4) the proposed UATD can be used as a plug and play method to clean ambiguous labels near boundaries between phases, and improve the performance of the current surgical phase recognition methods.
translated by 谷歌翻译
随机kriging已被广泛用于模拟元模拟,以预测复杂模拟模型的响应表面。但是,它的使用仅限于设计空间低维的情况,因为通常,样品复杂性(即随机Kriging生成准确预测所需的设计点数量)在设计的维度上呈指数增长。空间。大型样本量导致运行模拟模型的过度样本成本和由于需要倒入大量协方差矩阵而引起的严重计算挑战。基于张量的马尔可夫内核和稀疏的网格实验设计,我们开发了一种新颖的方法,可极大地减轻维数的诅咒。我们表明,即使在模型错误指定下,提议的方法论的样本复杂性也仅在维度上略有增长。我们还开发了快速算法,这些算法以其精确形式计算随机kriging,而无需任何近似方案。我们通过广泛的数值实验证明,我们的方法可以通过超过10,000维的设计空间来处理问题,从而通过相对于典型的替代方法在实践中通过数量级来提高预测准确性和计算效率。
translated by 谷歌翻译
Different people speak with diverse personalized speaking styles. Although existing one-shot talking head methods have made significant progress in lip sync, natural facial expressions, and stable head motions, they still cannot generate diverse speaking styles in the final talking head videos. To tackle this problem, we propose a one-shot style-controllable talking face generation framework. In a nutshell, we aim to attain a speaking style from an arbitrary reference speaking video and then drive the one-shot portrait to speak with the reference speaking style and another piece of audio. Specifically, we first develop a style encoder to extract dynamic facial motion patterns of a style reference video and then encode them into a style code. Afterward, we introduce a style-controllable decoder to synthesize stylized facial animations from the speech content and style code. In order to integrate the reference speaking style into generated videos, we design a style-aware adaptive transformer, which enables the encoded style code to adjust the weights of the feed-forward layers accordingly. Thanks to the style-aware adaptation mechanism, the reference speaking style can be better embedded into synthesized videos during decoding. Extensive experiments demonstrate that our method is capable of generating talking head videos with diverse speaking styles from only one portrait image and an audio clip while achieving authentic visual effects. Project Page: https://github.com/FuxiVirtualHuman/styletalk.
translated by 谷歌翻译
Unmanned aerial vehicle (UAV) swarms are considered as a promising technique for next-generation communication networks due to their flexibility, mobility, low cost, and the ability to collaboratively and autonomously provide services. Distributed learning (DL) enables UAV swarms to intelligently provide communication services, multi-directional remote surveillance, and target tracking. In this survey, we first introduce several popular DL algorithms such as federated learning (FL), multi-agent Reinforcement Learning (MARL), distributed inference, and split learning, and present a comprehensive overview of their applications for UAV swarms, such as trajectory design, power control, wireless resource allocation, user assignment, perception, and satellite communications. Then, we present several state-of-the-art applications of UAV swarms in wireless communication systems, such us reconfigurable intelligent surface (RIS), virtual reality (VR), semantic communications, and discuss the problems and challenges that DL-enabled UAV swarms can solve in these applications. Finally, we describe open problems of using DL in UAV swarms and future research directions of DL enabled UAV swarms. In summary, this survey provides a comprehensive survey of various DL applications for UAV swarms in extensive scenarios.
translated by 谷歌翻译
In this work, we focus on instance-level open vocabulary segmentation, intending to expand a segmenter for instance-wise novel categories without mask annotations. We investigate a simple yet effective framework with the help of image captions, focusing on exploiting thousands of object nouns in captions to discover instances of novel classes. Rather than adopting pretrained caption models or using massive caption datasets with complex pipelines, we propose an end-to-end solution from two aspects: caption grounding and caption generation. In particular, we devise a joint Caption Grounding and Generation (CGG) framework based on a Mask Transformer baseline. The framework has a novel grounding loss that performs explicit and implicit multi-modal feature alignments. We further design a lightweight caption generation head to allow for additional caption supervision. We find that grounding and generation complement each other, significantly enhancing the segmentation performance for novel categories. We conduct extensive experiments on the COCO dataset with two settings: Open Vocabulary Instance Segmentation (OVIS) and Open Set Panoptic Segmentation (OSPS). The results demonstrate the superiority of our CGG framework over previous OVIS methods, achieving a large improvement of 6.8% mAP on novel classes without extra caption data. Our method also achieves over 15% PQ improvements for novel classes on the OSPS benchmark under various settings.
translated by 谷歌翻译
Non-line-of-sight (NLOS) imaging aims to reconstruct the three-dimensional hidden scenes from the data measured in the line-of-sight, which uses photon time-of-flight information encoded in light after multiple diffuse reflections. The under-sampled scanning data can facilitate fast imaging. However, the resulting reconstruction problem becomes a serious ill-posed inverse problem, the solution of which is of high possibility to be degraded due to noises and distortions. In this paper, we propose two novel NLOS reconstruction models based on curvature regularization, i.e., the object-domain curvature regularization model and the dual (i.e., signal and object)-domain curvature regularization model. Fast numerical optimization algorithms are developed relying on the alternating direction method of multipliers (ADMM) with the backtracking stepsize rule, which are further accelerated by GPU implementation. We evaluate the proposed algorithms on both synthetic and real datasets, which achieve state-of-the-art performance, especially in the compressed sensing setting. All our codes and data are available at https://github.com/Duanlab123/CurvNLOS.
translated by 谷歌翻译
Cashews are grown by over 3 million smallholders in more than 40 countries worldwide as a principal source of income. As the third largest cashew producer in Africa, Benin has nearly 200,000 smallholder cashew growers contributing 15% of the country's national export earnings. However, a lack of information on where and how cashew trees grow across the country hinders decision-making that could support increased cashew production and poverty alleviation. By leveraging 2.4-m Planet Basemaps and 0.5-m aerial imagery, newly developed deep learning algorithms, and large-scale ground truth datasets, we successfully produced the first national map of cashew in Benin and characterized the expansion of cashew plantations between 2015 and 2021. In particular, we developed a SpatioTemporal Classification with Attention (STCA) model to map the distribution of cashew plantations, which can fully capture texture information from discriminative time steps during a growing season. We further developed a Clustering Augmented Self-supervised Temporal Classification (CASTC) model to distinguish high-density versus low-density cashew plantations by automatic feature extraction and optimized clustering. Results show that the STCA model has an overall accuracy of 80% and the CASTC model achieved an overall accuracy of 77.9%. We found that the cashew area in Benin has doubled from 2015 to 2021 with 60% of new plantation development coming from cropland or fallow land, while encroachment of cashew plantations into protected areas has increased by 70%. Only half of cashew plantations were high-density in 2021, suggesting high potential for intensification. Our study illustrates the power of combining high-resolution remote sensing imagery and state-of-the-art deep learning algorithms to better understand tree crops in the heterogeneous smallholder landscape.
translated by 谷歌翻译