最近已经设计了一些轻巧的卷积神经网络(CNN)模型,用于遥感对象检测(RSOD)。但是,他们中的大多数只是用可分离的卷积代替了香草卷积,这可能是由于很多精确损失而无法有效的,并且可能无法检测到方向的边界框(OBB)。同样,现有的OBB检测方法很难准确限制CNN预测的对象的形状。在本文中,我们提出了一个有效的面向轻质对象检测器(LO-DET)。具体而言,通道分离聚集(CSA)结构旨在简化可分开的卷积的复杂性,并开发了动态的接收场(DRF)机制,以通过自定义卷积内核及其感知范围来保持高精度,以保持高精度。网络复杂性。 CSA-DRF组件在保持高精度的同时优化了效率。然后,对角支撑约束头(DSC-Head)组件旨在检测OBB,并更准确,更稳定地限制其形状。公共数据集上的广泛实验表明,即使在嵌入式设备上,拟议的LO-DET也可以非常快地运行,具有检测方向对象的竞争精度。
translated by 谷歌翻译
任意为导向的对象检测(AOOD)已被广泛应用于在遥感图像中以不同方向的方式定位和分类对象。但是,AOOD模型中本地化和分类任务的不一致特征可能会导致歧义和低质量的对象预测,从而限制了检测性能。在本文中,提出了一种称为任务采样卷积(TS-CONV)的AOOD方法。 TS-CONV适应从各个敏感区域进行任务特征,并将这些特征映射为对齐方式,以指导动态标签分配以获得更好的预测。具体而言,TS-CONV中定位卷积的采样位置由与空间坐标相关的定向边界框(OBB)预测监督。尽管分类卷积的采样位置和卷积内核设计为根据不同方向进行自适应调整,以改善特征的方向鲁棒性。此外,制定了动态任务感知标签分配(DTLA)策略来选择最佳候选位置,并根据从TS-CONV获得的排名的任务吸引分数动态分配标签。在涵盖多个场景,多模式图像和多个对象的几个公共数据集上进行了广泛的实验,证明了所提出的TS-CONV的有效性,可伸缩性和出色性能。
translated by 谷歌翻译
在本文中,我们提出了一种新的GPU实现了螺旋CT重建的Katsevich算法。我们的实现划分了宿函数,并通过音高来重建CT图像间距。通过利用katsevich算法参数的周期性属性,我们的方法只需要为所有音高计算这些参数一次,因此GPU-Memory负担较低,非常适合深度学习。通过将我们的实现嵌入到网络中,我们提出了一种具有稀疏探测器的高音高螺旋CT重建的端到端深网络。由于我们的网络利用了来自SINOGAGAMS和CT图像中提取的特征,因此它可以同时减少由SINOGRAMS的稀疏性引起的条纹伪像,并在CT图像中保持细节。实验表明,我们的网络在主观和客观评估中表明了相关方法。
translated by 谷歌翻译
最近,已经提出了许多任意定向的物体检测(AOOD)方法并在许多领域中引起了广泛的关注。然而,它们中的大多数基于锚箱或标准高斯热手套。这种标签分配策略不仅可以反映任意取向对象的形状和方向特征,而且还具有高参数调整工作。本文提出了一种称为通用高斯热爱标记(GGH1)的新型Aood方法。具体地,提出了一种无锚性对象适应标签分配(OLA)策略以基于二维(2-D)定向的高斯热手段来定义正面候选物,其反映了任意取向对象的形状和方向特征。基于OLA,开发了定向边界盒(OBB)表示组分(ORC)以指示OBBS并通过神经网络学习适应地调整高斯中心以适应不同对象的特征。此外,具有面积标准化和动态置信度加权的关节优化损耗(JOL)旨在优化不同子特设的错位最佳结果。公共数据集的广泛实验表明,所提出的GGHL具有低参数调整和时间成本的良好性能。此外,通常适用于大多数Aood的方法,以提高其性能,包括嵌入式平台上的轻量级模型。
translated by 谷歌翻译
In this work, we focus on instance-level open vocabulary segmentation, intending to expand a segmenter for instance-wise novel categories without mask annotations. We investigate a simple yet effective framework with the help of image captions, focusing on exploiting thousands of object nouns in captions to discover instances of novel classes. Rather than adopting pretrained caption models or using massive caption datasets with complex pipelines, we propose an end-to-end solution from two aspects: caption grounding and caption generation. In particular, we devise a joint Caption Grounding and Generation (CGG) framework based on a Mask Transformer baseline. The framework has a novel grounding loss that performs explicit and implicit multi-modal feature alignments. We further design a lightweight caption generation head to allow for additional caption supervision. We find that grounding and generation complement each other, significantly enhancing the segmentation performance for novel categories. We conduct extensive experiments on the COCO dataset with two settings: Open Vocabulary Instance Segmentation (OVIS) and Open Set Panoptic Segmentation (OSPS). The results demonstrate the superiority of our CGG framework over previous OVIS methods, achieving a large improvement of 6.8% mAP on novel classes without extra caption data. Our method also achieves over 15% PQ improvements for novel classes on the OSPS benchmark under various settings.
translated by 谷歌翻译
Recent studies have shown that using an external Language Model (LM) benefits the end-to-end Automatic Speech Recognition (ASR). However, predicting tokens that appear less frequently in the training set is still quite challenging. The long-tail prediction problems have been widely studied in many applications, but only been addressed by a few studies for ASR and LMs. In this paper, we propose a new memory augmented lookup dictionary based Transformer architecture for LM. The newly introduced lookup dictionary incorporates rich contextual information in training set, which is vital to correctly predict long-tail tokens. With intensive experiments on Chinese and English data sets, our proposed method is proved to outperform the baseline Transformer LM by a great margin on both word/character error rate and tail tokens error rate. This is achieved without impact on the decoding efficiency. Overall, we demonstrate the effectiveness of our proposed method in boosting the ASR decoding performance, especially for long-tail tokens.
translated by 谷歌翻译
It is crucial to evaluate the quality and determine the optimal number of clusters in cluster analysis. In this paper, the multi-granularity characterization of the data set is carried out to obtain the hyper-balls. The cluster internal evaluation index based on hyper-balls(HCVI) is defined. Moreover, a general method for determining the optimal number of clusters based on HCVI is proposed. The proposed methods can evaluate the clustering results produced by the several classic methods and determine the optimal cluster number for data sets containing noises and clusters with arbitrary shapes. The experimental results on synthetic and real data sets indicate that the new index outperforms existing ones.
translated by 谷歌翻译
Generalizability to unseen forgery types is crucial for face forgery detectors. Recent works have made significant progress in terms of generalization by synthetic forgery data augmentation. In this work, we explore another path for improving the generalization. Our goal is to reduce the features that are easy to learn in the training phase, so as to reduce the risk of overfitting on specific forgery types. Specifically, in our method, a teacher network takes as input the face images and generates an attention map of the deep features by a diverse multihead attention ViT. The attention map is used to guide a student network to focus on the low-attended features by reducing the highly-attended deep features. A deep feature mixup strategy is also proposed to synthesize forgeries in the feature domain. Experiments demonstrate that, without data augmentation, our method is able to achieve promising performances on unseen forgeries and highly compressed data.
translated by 谷歌翻译
This paper presents a novel framework for planning in unknown and occluded urban spaces. We specifically focus on turns and intersections where occlusions significantly impact navigability. Our approach uses an inpainting model to fill in a sparse, occluded, semantic lidar point cloud and plans dynamically feasible paths for a vehicle to traverse through the open and inpainted spaces. We demonstrate our approach using a car's lidar data with real-time occlusions, and show that by inpainting occluded areas, we can plan longer paths, with more turn options compared to without inpainting; in addition, our approach more closely follows paths derived from a planner with no occlusions (called the ground truth) compared to other state of the art approaches.
translated by 谷歌翻译
In this work, we investigate improving the generalizability of GAN-generated image detectors by performing data augmentation in the fingerprint domain. Specifically, we first separate the fingerprints and contents of the GAN-generated images using an autoencoder based GAN fingerprint extractor, followed by random perturbations of the fingerprints. Then the original fingerprints are substituted with the perturbed fingerprints and added to the original contents, to produce images that are visually invariant but with distinct fingerprints. The perturbed images can successfully imitate images generated by different GANs to improve the generalization of the detectors, which is demonstrated by the spectra visualization. To our knowledge, we are the first to conduct data augmentation in the fingerprint domain. Our work explores a novel prospect that is distinct from previous works on spatial and frequency domain augmentation. Extensive cross-GAN experiments demonstrate the effectiveness of our method compared to the state-of-the-art methods in detecting fake images generated by unknown GANs.
translated by 谷歌翻译