It is crucial to evaluate the quality and determine the optimal number of clusters in cluster analysis. In this paper, the multi-granularity characterization of the data set is carried out to obtain the hyper-balls. The cluster internal evaluation index based on hyper-balls(HCVI) is defined. Moreover, a general method for determining the optimal number of clusters based on HCVI is proposed. The proposed methods can evaluate the clustering results produced by the several classic methods and determine the optimal cluster number for data sets containing noises and clusters with arbitrary shapes. The experimental results on synthetic and real data sets indicate that the new index outperforms existing ones.
translated by 谷歌翻译
颗粒球计算是一种有效,坚固,可扩展,可扩展和粒度计算的学习方法。颗粒球计算的基础是颗粒球产生方法。本文提出了一种使用该划分加速粒度球的方法来代替$ k $ -means。它可以大大提高颗粒球生成的效率,同时确保与现有方法类似的准确性。此外,考虑粒子球的重叠消除和一些其他因素,提出了一种新的颗粒球生成的新自适应方法。这使得在真实意义上的无参数和完全自适应的颗粒球生成过程。此外,本文首先为颗粒球覆盖物提供了数学模型。一些真实数据集的实验结果表明,所提出的两个颗粒球生成方法具有与现有方法相似的准确性,而实现适应性或加速度。
translated by 谷歌翻译
由于其简单性和实用性,密度峰值聚类已成为聚类算法的NOVA。但是,这是一个主要的缺点:由于其高计算复杂性,这是耗时的。在此,开发了稀疏搜索和K-D树的密度峰聚类算法来解决此问题。首先,通过使用k-d树来替换原始的全等级距离矩阵来计算稀疏距离矩阵,以加速局部密度的计算。其次,提出了一种稀疏的搜索策略,以加快与$ k $最近邻居的集合与由数据点组成的集合之间的相互分离的计算。此外,采用了决策值的二阶差异方法来自适应确定群集中心。最后,通过与其他六种最先进的聚类算法进行比较,在具有不同分布特性的数据集上进行实验。事实证明,该算法可以有效地将原始DPC的计算复杂性从$ O(n^2k)$降低到$ O(n(n^{1-1/k}+k))$。特别是对于较大的数据集,效率更加明显地提高。此外,聚类精度也在一定程度上提高了。因此,可以得出结论,新提出的算法的总体性能非常好。
translated by 谷歌翻译
K-Medoids算法是K-均值算法的流行变体,广泛用于模式识别和机器学习。 K-Medoids算法的主要缺点是它可以被困在局部Optima中。最近提出了改进的K-Medoids算法(INCKM)来克服这一缺点,基于使用参数选择过程构建候选Medoid子集,但在处理不平衡数据集时可能会失败。在本文中,我们提出了一种新型的增量K-Medoids算法(INCKPP),该算法通过非参数和随机K-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-MEANS ++搜索程序,将簇数从2动态增加到K的数量。我们的算法可以在改进的K-Medoids算法中克服参数选择问题,改善聚类性能,并很好地处理不平衡数据集。但是我们的算法在计算效率方面具有弱点。为了解决此问题,我们提出了一种快速的Inckpp算法(称为Inckpp $ _ {sample} $),该算法可保留具有改进的聚类性能的简单和快速K-Medoids算法的计算效率。将所提出的算法与三种最新算法进行比较:改进的K-Medoids算法(INCKM),简单和快速的K-Medoids算法(FKM)和K-Means +++算法(KPP)。包括不平衡数据集在内的合成和现实世界数据集的广泛实验说明了所提出的算法的有效性。
translated by 谷歌翻译
$ k $ -means集群是各学科的基本问题。此问题是非核解,并且标准算法仅保证找到本地最佳算法。利用[1]的本地解决方案的结构,我们提出了一种用于逃离不良局部解决方案并恢复全球解决方案(或地面真理)的一般算法框架。该框架包括迭代:(i)在本地解决方案中检测MIS指定的群集,并通过非本地操作来改进当前本地解决方案。我们讨论这些步骤的实施,并阐明所提出的框架如何从几何视角统一文献中的k $ -means算法的变体。此外,我们介绍了所提出的框架的两个自然扩展,其中初始数量的群集被遗漏。我们为我们的方法提供了理论理的理由,这是通过广泛的实验证实的。
translated by 谷歌翻译
Pawlak粗糙集和邻居粗糙集是两个最常见的粗糙设置理论模型。 Pawlawk可以使用等价类来表示知识,但无法处理连续数据;邻域粗糙集可以处理连续数据,但它失去了使用等价类代表知识的能力。为此,本文介绍了基于格兰拉球计算的粒状粗糙集。颗粒球粗糙集可以同时代表佩皮克粗集,以及邻域粗糙集,以实现两者的统一表示。这使得粒度球粗糙集不仅可以处理连续数据,而且可以使用对知识表示的等价类。此外,我们提出了一种颗粒球粗糙集的实现算法。基准数据集的实验符合证明,由于颗粒球计算的鲁棒性和适应性的组合,与Pawlak粗糙集和传统的邻居粗糙相比,粒状球粗糙集的学习准确性得到了大大提高放。颗粒球粗糙集也优于九流行或最先进的特征选择方法。
translated by 谷歌翻译
广泛应用的密度峰聚类(DPC)算法使得直观的群集形成假设假设集群中心通常被具有较低局部密度的数据点包围,远离具有较高局部密度的其他数据点。然而,这种假设遭受一个限制,即在识别具有较低密度的簇时通常有问题,因为它们可以容易地合并到具有更高密度的其他簇中。结果,DPC可能无法识别具有变分密度的簇。为了解决这个问题,我们提出了一种变分浓度峰值聚类(VDPC)算法,该算法旨在系统地和自主地在具有各种类型的密度分布的数据集上执行聚类任务。具体而言,我们首先提出了一种新的方法,以确定所有数据点中的代表,并根据所确定的代表构建初始集群,以进一步分析集群财产。此外,我们根据其本地密度将所有数据点划分为不同的级别,并通过组合DPC和DBSCAN的优点来提出统一的聚类框架。因此,系统地处理跨越不同密度水平跨越不同密度水平的所有识别的初始簇以形成最终簇。为了评估所提出的VDPC算法的有效性,我们使用20个数据集进行广泛的实验,包括八个合成,六个现实世界和六个图像数据集。实验结果表明,VDPC优于两个经典算法(即,DPC和DBSCAN)和四种最先进的扩展DPC算法。
translated by 谷歌翻译
分层群集的主要挑战之一是如何适当地识别群集树较低级别的代表点,这些点将被用作群集树的较高级别的根源以进行进一步的聚合。然而,传统的分层聚类方法采用了一些简单的技巧来选择可能不像代表的“代表”点。因此,构造的簇树在其稳健性和可靠性较弱的方面不太吸引。针对这个问题,我们提出了一种新的分层聚类算法,其中,在构建聚类树形图的同时,我们可以有效地检测基于对每个子最小跨越树中的互易读数的互动最近数据点进行评分的代表点。 UCI数据集的广泛实验表明,所提出的算法比其他基准更准确。同时,在我们的分析下,所提出的算法具有O(nlogn)时间复杂度和O(logn)空间复杂度,表明它具有在处理具有更少时间和存储消​​耗的大规模数据方面具有可扩展性。
translated by 谷歌翻译
现有的聚类算法(例如K-均值)通常需要预设参数,例如类别K的数量,并且此类参数可能导致未能输出目标和一致的聚类结果。本文介绍了基于信息理论的聚类方法,群集结果中的簇具有最大的平均信息熵(在本文中称为熵有效载荷)。此方法可以带来以下好处:首先,此方法不需要预设任何超级参数,例如类别编号或其他类似阈值,其次,聚类结果具有最大的信息表达效率。它可以用于图像分割,对象分类等,并且可以是无监督学习的基础。
translated by 谷歌翻译
A major challenge when using k-means clustering often is how to choose the parameter k, the number of clusters. In this letter, we want to point out that it is very easy to draw poor conclusions from a common heuristic, the "elbow method". Better alternatives have been known in literature for a long time, and we want to draw attention to some of these easy to use options, that often perform better. This letter is a call to stop using the elbow method altogether, because it severely lacks theoretic support, and we want to encourage educators to discuss the problems of the method -- if introducing it in class at all -- and teach alternatives instead, while researchers and reviewers should reject conclusions drawn from the elbow method.
translated by 谷歌翻译
在进化多目标聚类方法(EMOC)中,已将各种聚类标准应用于目标函数。但是,大多数EMOC并未提供有关目标功能的选择和使用的详细分析。旨在支持eMOC中目标的更好的选择和定义,本文提出了通过检查搜索方向及其在寻找最佳结果的潜力来分析进化优化中聚类标准的可采性的分析。结果,我们证明了目标函数的可接受性如何影响优化。此外,我们还提供有关eMOC中聚类标准的组合和使用的见解。
translated by 谷歌翻译
用于评估聚类结果的各种集群有效性指数。使用这些指数的主要目标之一是寻求最佳的未知数簇。一些索引对于具有不同密度,大小和形状的簇很好。然而,这些有效性指数的共同弱点是它们通常只提供一个最佳数量的簇。在现实世界中,该数字未知,并且可能有多个可能的选择。我们基于一对数据点之间的实际距离与两个点占据的群集的质心距离之间的相关性开发了一个新的群集有效性指数。我们提出的指数不断产生几个局部峰,并克服了先前所述的弱点。在不同方案(包括UCI现实世界数据集)的不同实验中,已经进行了将所提出的有效性指数与几个知名的实验进行比较。与此新索引相关的R软件包可在https://github.com/nwirosri/ncvalid上找到。
translated by 谷歌翻译
本文研究了分层聚类问题,其中目标是生产一种在数据集的变化尺度上表示集群的树形图。我们提出了用于设计并行分层凝聚聚类(HAC)算法的Parchain框架,并使用该框架,我们获得了全面连锁,平均联系和病房的联动标准的新颖平行算法。与最先前的并行HAC算法相比,这需要二次存储器,我们的新算法仅需要线性存储器,并且可以扩展到大数据集。 PARCHAIN基于我们最近邻的链算法的并行化,并使多个群集能够在每一轮上合并。我们介绍了两个关键优化,这对于效率至关重要:范围查询优化,减少查找群集的最近邻居所需的距离计算数,以及存储可能重复使用的先前计算的距离子集的缓存优化。通过实验,我们表明,我们的高度优化实现,使用48个核心,通过双向超线程实现5.8--110.1倍的加速,通过最先进的并行HAC算法,实现了13.75--54.23倍的自相对加速。与最先进的算法相比,我们的算法较少的空间少于237.3倍。我们的算法能够扩展到具有数百万点的数据集大小,现有算法无法处理该算法。
translated by 谷歌翻译
聚类分析是机器学习中的关键任务之一。传统上,聚类一直是一项独立的任务,与异常检测分开。由于离群值可以大大侵蚀聚类的性能,因此,少数算法尝试在聚类过程中掺入离群值检测。但是,大多数这些算法基于基于无监督的分区算法,例如K-均值。鉴于这些算法的性质,它们通常无法处理复杂的非凸形簇。为了应对这一挑战,我们提出了SSDBCODI,这是一种半监督密度的算法。 SSDBCODI结合了基于密度的算法的优势,这些算法能够处理复杂形状的簇,以及半监督元素,该元素具有灵活性,可以根据一些用户标签调整聚类结果。我们还将离群检测组件与聚类过程合并。根据过程中产生的三个分数检测到潜在离群值:(1)达到性得分,该得分衡量了一个点的密度可至关重要是对标记的正常物体的测量值,(2)局部密度得分,该局部密度得分,它测量了相邻密度的密度数据对象和(3)相似性得分,该分数测量了一个点与其最近标记的异常值的接近度。然后,在下一步中,在用于训练分类器以进一步群集和离群值检测之前,基于这三个分数为每个数据实例生成实例权重。为了增强对拟议算法的理解,为了进行评估,我们已经针对多个数据集上的某些最新方法运行了拟议的算法,并分别列出了除聚类外检测的结果。我们的结果表明,我们的算法可以通过少量标签获得优异的结果。
translated by 谷歌翻译
Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery of clusters with arbitrary shape and good efficiency on large databases. The well-known clustering algorithms offer no solution to the combination of these requirements. In this paper, we present the new clustering algorithm DBSCAN relying on a density-based notion of clusters which is designed to discover clusters of arbitrary shape. DBSCAN requires only one input parameter and supports the user in determining an appropriate value for it. We performed an experimental evaluation of the effectiveness and efficiency of DBSCAN using synthetic data and real data of the SEQUOIA 2000 benchmark. The results of our experiments demonstrate that (1) DBSCAN is significantly more effective in discovering clusters of arbitrary shape than the well-known algorithm CLAR-ANS, and that (2) DBSCAN outperforms CLARANS by factor of more than 100 in terms of efficiency.
translated by 谷歌翻译
We review clustering as an analysis tool and the underlying concepts from an introductory perspective. What is clustering and how can clusterings be realised programmatically? How can data be represented and prepared for a clustering task? And how can clustering results be validated? Connectivity-based versus prototype-based approaches are reflected in the context of several popular methods: single-linkage, spectral embedding, k-means, and Gaussian mixtures are discussed as well as the density-based protocols (H)DBSCAN, Jarvis-Patrick, CommonNN, and density-peaks.
translated by 谷歌翻译
聚类是一种无监督的机器学习方法,其中未标记的元素/对象被分组在一起,旨在构建成熟的群集,以根据其相似性对其元素进行分类。该过程的目的是向研究人员提供有用的帮助,以帮助她/他确定数据中的模式。在处理大型数据库时,如果没有聚类算法的贡献,这种模式可能无法轻易检测到。本文对最广泛使用的聚类方法进行了深入的描述,并伴随着有关合适的参数选择和初始化的有用演示。同时,本文不仅代表了一篇评论,该评论突出了所检查的聚类技术的主要要素,而且强调了这些算法基于3个数据集的聚类效率的比较,从而在对抗性和复杂性中揭示了其现有的弱点和能力,在持续的离散和持续的离散和离散和持续的差异。观察。产生的结果有助于我们根据数据集的大小提取有关检查聚类技术的适当性的宝贵结论。
translated by 谷歌翻译
预计量子计算将提供巨大的计算能力,可以为许多数据科学问题提供有效的解决方案。但是,当前一代的量子设备很小且嘈杂,这使得处理与实际问题相关的大数据集变得困难。核心选择旨在通过减少输入数据的大小而不损害准确性来避免此问题。最近的工作表明,核心选择可以帮助实施量子K-均值聚类问题。但是,尚未探索核心选择对量子K-均值聚类性能的影响。在这项工作中,我们比较了两种核心技术(BFL16和Oneshot)的相对性能以及每种情况下的核心结构的大小,相对于各种数据集,并布局在实现量子算法中的核心选择的优势和局限性。我们还研究了去极化量子噪声和位叶片误差的影响,并实施了量子自动编码器技术以超过噪声效应。我们的工作为未来在近期量子设备上实施数据科学算法提供了有用的见解,这些量子设备通过核心选择减少了问题大小。
translated by 谷歌翻译
内部群集有效性度量(例如Calinski-Harabasz,Dunn或Davies-Bouldin指数)经常用于选择适当数量的分区数量,应将数据集分为二。在本文中,我们考虑如果将这些索引视为无监督学习活动中的客观功能会发生什么。关于轮廓指数的最佳分组是否真的有意义?事实证明,许多群集有效性指数促进了聚类,这些聚类与专家知识相匹配。我们还引入了邓恩指数的一个新的,表现出色的变体,该变体是建立在OWA操作员和接近邻居图的基础上的,因此,无论其形状如何,都可以更好地相互分离。
translated by 谷歌翻译
通过快速搜索并发现密度峰(DPC)(自2014年以来)的聚类已被证明是一种有希望的聚类方法,可以通过找到密度峰来有效地发现簇中心。 DPC的准确性取决于截止距离($ d_c $),群集号($ K $)和簇中心的选择。此外,最终分配策略是敏感的,容错的容量差。上面的缺点使该算法对参数敏感,仅适用于某些特定数据集。为了克服DPC的局限性,本文提出了基于天然最近邻域(DPC-PPPNNN)的密度峰值聚类的概率传播算法的提高。通过引入自然邻域和概率传播的想法,DPC-PPNNN实现了非参数聚类过程,并使该算法适用于更复杂的数据集。在几个数据集的实验中,DPC-PPNNN显示出优于DPC,K-均值和DBSCAN的表现。
translated by 谷歌翻译