交叉语言信息检索(CLIR)旨在将以与用户查询不同的语言编写的文档进行排序。不同语言之间的内在差距是CLIR的基本挑战。在本文中,由于多种语言的实体的足够信息,我们将多语言知识图(kg)引入CLIR任务。它被视为“银弹”,同时在查询和文档之间进行显式对齐,并扩大查询的表示。我们提出了一个名为CLIR的模型,为我们的任务提供了分层知识增强(加息)。所提出的模型用多语言BERT编码查询,文档和kg中的文本信息,并在具有分层信息融合机制中将kg信息包含在查询文件匹配过程中。特别是,徒步旅行首先将kg中的实体及其社区集成到具有知识级融合的查询表示中,然后将来自源语言的知识结合起来进一步减轻语言级融合的语言间隙。最后,实验结果表明,徒步旅行达到了最先进的竞争对手的大量改进。
translated by 谷歌翻译
分子表示学习有助于多个下游任务,例如分子性质预测和药物设计。为了适当地代表分子,图形对比学习是一个有前途的范式,因为它利用自我监督信号并没有人类注释要求。但是,先前的作品未能将基本域名知识纳入图表语义,因此忽略了具有共同属性的原子之间的相关性,但不通过键连接连接。为了解决这些问题,我们构建化学元素知识图(KG),总结元素之间的微观关联,并提出了一种用于分子代表学习的新颖知识增强的对比学习(KCL)框架。 KCL框架由三个模块组成。第一个模块,知识引导的图形增强,基于化学元素kg增强原始分子图。第二模块,知识意识的图形表示,利用用于原始分子图的公共曲线图编码器和通过神经网络(KMPNN)的知识感知消息来提取分子表示来编码增强分子图中的复杂信息。最终模块是一种对比目标,在那里我们在分子图的这两个视图之间最大化协议。广泛的实验表明,KCL获得了八个分子数据集上的最先进基线的优异性能。可视化实验适当地解释了在增强分子图中从原子和属性中了解的KCL。我们的代码和数据可用于补充材料。
translated by 谷歌翻译
外部知识(A.K.A.侧面信息)在零拍摄学习(ZSL)中起着关键作用,该角色旨在预测从未出现在训练数据中的看不见的类。已被广泛调查了几种外部知识,例如文本和属性,但他们独自受到不完整的语义。因此,一些最近的研究提出了由于其高度富有效力和代表知识的兼容性而使用知识图表(千克)。但是,ZSL社区仍然缺乏用于学习和比较不同外部知识设置和基于不同的KG的ZSL方法的标准基准。在本文中,我们提出了六个资源,涵盖了三个任务,即零拍摄图像分类(ZS-IMGC),零拍摄关系提取(ZS-RE)和零拍KG完成(ZS-KGC)。每个资源都有一个正常的zsl基准标记和包含从文本到属性的kg的kg,从关系知识到逻辑表达式。我们已清楚地介绍了这些资源,包括其建设,统计数据格式和使用情况W.r.t.不同的ZSL方法。更重要的是,我们进行了一项全面的基准研究,具有两个通用和最先进的方法,两种特定方法和一种可解释方法。我们讨论并比较了不同的ZSL范式W.R.T.不同的外部知识设置,并发现我们的资源具有开发更高级ZSL方法的巨大潜力,并为应用KGS进行增强机学习的更多解决方案。所有资源都可以在https://github.com/china-uk-zsl/resources_for_kzsl上获得。
translated by 谷歌翻译
Driven by improved architectures and better representation learning frameworks, the field of visual recognition has enjoyed rapid modernization and performance boost in the early 2020s. For example, modern ConvNets, represented by ConvNeXt, have demonstrated strong performance in various scenarios. While these models were originally designed for supervised learning with ImageNet labels, they can also potentially benefit from self-supervised learning techniques such as masked autoencoders (MAE). However, we found that simply combining these two approaches leads to subpar performance. In this paper, we propose a fully convolutional masked autoencoder framework and a new Global Response Normalization (GRN) layer that can be added to the ConvNeXt architecture to enhance inter-channel feature competition. This co-design of self-supervised learning techniques and architectural improvement results in a new model family called ConvNeXt V2, which significantly improves the performance of pure ConvNets on various recognition benchmarks, including ImageNet classification, COCO detection, and ADE20K segmentation. We also provide pre-trained ConvNeXt V2 models of various sizes, ranging from an efficient 3.7M-parameter Atto model with 76.7% top-1 accuracy on ImageNet, to a 650M Huge model that achieves a state-of-the-art 88.9% accuracy using only public training data.
translated by 谷歌翻译
In contrast to the control-theoretic methods, the lack of stability guarantee remains a significant problem for model-free reinforcement learning (RL) methods. Jointly learning a policy and a Lyapunov function has recently become a promising approach to ensuring the whole system with a stability guarantee. However, the classical Lyapunov constraints researchers introduced cannot stabilize the system during the sampling-based optimization. Therefore, we propose the Adaptive Stability Certification (ASC), making the system reach sampling-based stability. Because the ASC condition can search for the optimal policy heuristically, we design the Adaptive Lyapunov-based Actor-Critic (ALAC) algorithm based on the ASC condition. Meanwhile, our algorithm avoids the optimization problem that a variety of constraints are coupled into the objective in current approaches. When evaluated on ten robotic tasks, our method achieves lower accumulated cost and fewer stability constraint violations than previous studies.
translated by 谷歌翻译
In this tutorial paper, we look into the evolution and prospect of network architecture and propose a novel conceptual architecture for the 6th generation (6G) networks. The proposed architecture has two key elements, i.e., holistic network virtualization and pervasive artificial intelligence (AI). The holistic network virtualization consists of network slicing and digital twin, from the aspects of service provision and service demand, respectively, to incorporate service-centric and user-centric networking. The pervasive network intelligence integrates AI into future networks from the perspectives of networking for AI and AI for networking, respectively. Building on holistic network virtualization and pervasive network intelligence, the proposed architecture can facilitate three types of interplay, i.e., the interplay between digital twin and network slicing paradigms, between model-driven and data-driven methods for network management, and between virtualization and AI, to maximize the flexibility, scalability, adaptivity, and intelligence for 6G networks. We also identify challenges and open issues related to the proposed architecture. By providing our vision, we aim to inspire further discussions and developments on the potential architecture of 6G.
translated by 谷歌翻译
We present Second Thought, a new learning paradigm that enables language models (LMs) to re-align with human values. By modeling the chain-of-edits between value-unaligned and value-aligned text, with LM fine-tuning and additional refinement through reinforcement learning, Second Thought not only achieves superior performance in three value alignment benchmark datasets but also shows strong human-value transfer learning ability in few-shot scenarios. The generated editing steps also offer better interpretability and ease for interactive error correction. Extensive human evaluations further confirm its effectiveness.
translated by 谷歌翻译
A storyboard is a roadmap for video creation which consists of shot-by-shot images to visualize key plots in a text synopsis. Creating video storyboards however remains challenging which not only requires association between high-level texts and images, but also demands for long-term reasoning to make transitions smooth across shots. In this paper, we propose a new task called Text synopsis to Video Storyboard (TeViS) which aims to retrieve an ordered sequence of images to visualize the text synopsis. We construct a MovieNet-TeViS benchmark based on the public MovieNet dataset. It contains 10K text synopses each paired with keyframes that are manually selected from corresponding movies by considering both relevance and cinematic coherence. We also present an encoder-decoder baseline for the task. The model uses a pretrained vision-and-language model to improve high-level text-image matching. To improve coherence in long-term shots, we further propose to pre-train the decoder on large-scale movie frames without text. Experimental results demonstrate that our proposed model significantly outperforms other models to create text-relevant and coherent storyboards. Nevertheless, there is still a large gap compared to human performance suggesting room for promising future work.
translated by 谷歌翻译
Retrieval-augmented in-context learning has emerged as a powerful approach for addressing knowledge-intensive tasks using frozen language models (LM) and retrieval models (RM). Existing work has combined these in simple "retrieve-then-read" pipelines in which the RM retrieves passages that are inserted into the LM prompt. To begin to fully realize the potential of frozen LMs and RMs, we propose Demonstrate-Search-Predict (DSP), a framework that relies on passing natural language texts in sophisticated pipelines between an LM and an RM. DSP can express high-level programs that bootstrap pipeline-aware demonstrations, search for relevant passages, and generate grounded predictions, systematically breaking down problems into small transformations that the LM and RM can handle more reliably. We have written novel DSP programs for answering questions in open-domain, multi-hop, and conversational settings, establishing in early evaluations new state-of-the-art in-context learning results and delivering 37-200%, 8-40%, and 80-290% relative gains against vanilla LMs, a standard retrieve-then-read pipeline, and a contemporaneous self-ask pipeline, respectively.
translated by 谷歌翻译
Unbiased learning to rank (ULTR) studies the problem of mitigating various biases from implicit user feedback data such as clicks, and has been receiving considerable attention recently. A popular ULTR approach for real-world applications uses a two-tower architecture, where click modeling is factorized into a relevance tower with regular input features, and a bias tower with bias-relevant inputs such as the position of a document. A successful factorization will allow the relevance tower to be exempt from biases. In this work, we identify a critical issue that existing ULTR methods ignored - the bias tower can be confounded with the relevance tower via the underlying true relevance. In particular, the positions were determined by the logging policy, i.e., the previous production model, which would possess relevance information. We give both theoretical analysis and empirical results to show the negative effects on relevance tower due to such a correlation. We then propose three methods to mitigate the negative confounding effects by better disentangling relevance and bias. Empirical results on both controlled public datasets and a large-scale industry dataset show the effectiveness of the proposed approaches.
translated by 谷歌翻译