深度学习(DL)逆技术增加了人工电磁材料(AEM)设计的速度,提高了所得装置的质量。许多DL逆技术在多个AEM设计任务中成功地成功,但要比较,对比度和评估各种技术,澄清逆问题的潜在弊端是至关重要的。在这里,我们审查最先进的方法,并对深度学习逆方法进行全面调查,对AEM设计进行深度学习逆方法和可逆和有条件可逆的神经网络。我们可以轻松访问和快速可实现的AEM设计基准,该基准提供了一种有效地确定最适合解决不同设计挑战的DL技术的方法。我们的方法是通过对重复模拟的限制和易于集成度量的限制,我们提出的是任何AEM设计问题的相对弊端。我们表明,由于问题变得越来越弊,无论模拟约束如何,带有边界损耗(NA)的神经伴随都会产生更好的解决方案。在简单的AEM设计任务中,当模拟有限时,直接神经网络(NN)更好,而混合密度网络(MDN)和条件变化自动编码器(VAE)预测的几何形状可以通过持续的采样和重新模拟来改进。
translated by 谷歌翻译
许多物理系统由普通的或部分微分方程描述,其解决方案由复杂域中的全象或亚纯函数给出。在许多情况下,只有在纯虚拟JW轴上的各个点上只观察到这些功能的大小,因为它们的阶段的相干测量通常是昂贵的。然而,期望在可能的情况下从幅度中检索丢失的阶段。为此,我们提出了一种基于Blaschke产品的物理漏险的深神经网络,用于相位检索。灵感来自赫尔森和Sarason定理,我们使用Blaschke产品神经网络(BPNN)来恢复Blaschke产品的合理功能系数,基于输入作为输入的幅度观察。然后使用得到的Rational函数进行相位检索。我们将BPNN与常规深度神经网络(NNS)进行比较多相检索问题,包括合成和当代的现实世界问题(例如,数据收集需要大量专业知识的超材料,并且耗时)。在每个阶段检索问题上,我们与不同尺寸和超参数设置的传统NNS群体进行比较。即使没有任何超参数搜索,我们发现BPNNS始终如一地优于稀缺数据场景中优化NNS的群体,并且尽管模型更小。结果又可以应用于计算超材料的折射率,这是物质科学新兴领域的重要问题。
translated by 谷歌翻译
Many real-world reinforcement learning tasks require control of complex dynamical systems that involve both costly data acquisition processes and large state spaces. In cases where the transition dynamics can be readily evaluated at specified states (e.g., via a simulator), agents can operate in what is often referred to as planning with a \emph{generative model}. We propose the AE-LSVI algorithm for best-policy identification, a novel variant of the kernelized least-squares value iteration (LSVI) algorithm that combines optimism with pessimism for active exploration (AE). AE-LSVI provably identifies a near-optimal policy \emph{uniformly} over an entire state space and achieves polynomial sample complexity guarantees that are independent of the number of states. When specialized to the recently introduced offline contextual Bayesian optimization setting, our algorithm achieves improved sample complexity bounds. Experimentally, we demonstrate that AE-LSVI outperforms other RL algorithms in a variety of environments when robustness to the initial state is required.
translated by 谷歌翻译
在处理多点测量时,即传统的黑盒优化方法效率低下,即,当控制域中的每个查询需要在次级域中的一组测量以计算目标时。在粒子加速器中,四极扫描的发射率调整是具有多点测量的优化示例。尽管发射率是高亮度机器(包括X射线激光器和线性碰撞者)的性能的关键参数,但综合优化通常受到调整所需的时间的限制。在这里,我们将最近提供的贝叶斯算法执行(BAX)扩展到具有多点测量的优化任务。 BAX通过在关节控制测量域中选择和建模各个点来实现样品效率。我们将BAX应用于Linac相干光源(LCLS)和晚期加速器实验测试II(Facet-II)粒子加速器的设施。在LCLS模拟环境中,我们表明BAX的效率提高了20倍,同时与传统优化方法相比,噪声也更强。此外,我们在LCLS和facet-II上运行了Bax,与Facet-II的手工调整发射率相匹配,并获得了比LCLS在LCLS上获得的最佳发射率低24%。我们预计我们的方法很容易适应其他类型的优化问题,这些优化问题涉及科学仪器中常见的多点测量。
translated by 谷歌翻译
在环境抽象中进行高级搜索来指导低水平决策,这是一种有效的方法,是解决连续状态和行动空间中的长途任务的有效方法。最近的工作表明,可以以符号操作员和神经采样器的形式学习使这种二聚体计划的动作抽象,并且鉴于实现已知目标的符号谓词和演示。在这项工作中,我们表明,在动作往往会导致大量谓词发生变化的环境中,现有的方法不足。为了解决这个问题,我们建议学习具有忽略效果的操作员。激发我们方法的关键思想是,对谓词的每一个观察到的变化进行建模是不必要的。唯一需要建模的更改是高级搜索以实现指定目标所需的更改。在实验上,我们表明我们的方法能够学习具有忽略六个混合机器人域效果的操作员,这些企业能够解决一个代理,以解决具有不同初始状态,目标和对象数量的新任务变化,比几个基线要高得多。
translated by 谷歌翻译
双簇算法分区数据并同时协变量,提供了几个领域的新见解,例如分析基因表达以发现新的生物学功能。本文使用能量距离(ED)和最大平均差异(MMD)的概念在抽象空间中开发了一种新的无模型双簇算法 - 能够处理复杂数据(例如曲线或图形)的概率分布之间的两个距离。所提出的方法比大多数现有文献方法都可以学习更多的通用和复杂的群集形状,这些方法通常着重于检测均值和方差差异。尽管我们的方法的两次簇配置受到限制,以在基准和协变量级别创建不相交结构,但结果是竞争性的。我们的结果与最佳场景中的最新方法相似,假设有适当的内核选择,当群集差异集中在高阶矩中时,它们的表现优于它们。该模型的性能已在涉及模拟和现实世界数据集的几种情况下进行了测试。最后,使用最佳运输理论的一些工具确定了新的理论一致性结果。
translated by 谷歌翻译
我们研究一般图形结构问题中方差估计的问题。首先,我们为均质的情况开发一个线性时间估计器,该估计器可以始终如一地估计一般图中的方差。我们表明,当平均信号与规范缩放的总变化时,我们的估计器可达到链和2D网格图的最小速率。此外,我们在瞬间条件下在一般图中的融合套索估计器的平均平方误差性能以及误差的尾巴行为上的束缚提供了一般的上限。这些上限使我们能够概括更广泛的分布类别,例如亚指数,在融合拉索上的许多现有结果,这些结果仅在以下假设是误差是次高斯随机变量的假设中。利用我们的上限,我们研究了一个简单的总变异正则估计器,用于估计异源性情况下的方差信号。我们的结果表明,方差估计器达到了估计网格图中有界变化的信号,$ k $ neart的邻居图具有非常温和的假设的最小值,并且对于估计任何连接图中的方差都是一致的。此外,广泛的数值结果表明,我们提出的估计量在各种图形结构模型中表现出色。
translated by 谷歌翻译
多级优化已被广泛用作无数机器学习问题的数学基础,例如超参数优化,元学习和增强学习,仅举几例。尽管如此,实施多级优化程序通常需要在数学和编程方面的专业知识,这在该领域的研究都阻碍了研究。我们通过引入贝蒂(Betty)(用于基于梯度的多级优化的高级软件库)迈出了缩小这一差距的第一步。为此,我们基于对多级优化作为数据流图的新解释开发自动分化过程。我们进一步将多级优化的主要组成部分作为Python类,以实现简单,模块化和可维护的编程。我们从经验上证明,Betty可以用作一系列多级优化程序的高级编程接口,同时观察到测试准确性的提高11 \%,GPU存储器使用率下降14 \%,而20 \%降低了。在多个基准上的现有实现的墙壁时间。该代码可从http://github.com/leopard-ai/betty获得。
translated by 谷歌翻译
采集函数是贝叶斯优化(BO)中的关键组成部分,通常可以写为在替代模型下对效用函数的期望。但是,为了确保采集功能是可以优化的,必须对替代模型和实用程序功能进行限制。为了将BO扩展到更广泛的模型和实用程序,我们提出了不含可能性的BO(LFBO),这是一种基于无似然推理的方法。 LFBO直接对采集函数进行建模,而无需单独使用概率替代模型进行推断。我们表明,可以将计算LFBO中的采集函数缩小为优化加权分类问题,而权重对应于所选择的实用程序。通过为预期改进选择实用程序功能,LFBO在几个现实世界优化问题上都优于各种最新的黑盒优化方法。 LFBO还可以有效利用目标函数的复合结构,从而进一步改善了其遗憾。
translated by 谷歌翻译
必须校准不确定性估计值(即准确)和清晰(即信息性),以便有用。这激发了各种重新校准的方法,这些方法使用固定数据将未校准的模型转化为校准模型。但是,由于原始模型也是概率模型,因此现有方法的适用性受到限制。我们在回归中引入了一种用于重新校准的算法类别,我们称为模块化保形校准(MCC)。该框架允许人们将任何回归模型转换为校准的概率模型。 MCC的模块化设计使我们能够对现有算法进行简单调整,以实现良好的分配预测。我们还为MCC算法提供有限样本的校准保证。我们的框架恢复了等渗的重新校准,保形校准和共形间隔预测,这意味着我们的理论结果也适用于这些方法。最后,我们对17个回归数据集进行了MCC的经验研究。我们的结果表明,在我们的框架中设计的新算法实现了接近完美的校准,并相对于现有方法提高了清晰度。
translated by 谷歌翻译