Unsupervised pre-training on millions of digital-born or scanned documents has shown promising advances in visual document understanding~(VDU). While various vision-language pre-training objectives are studied in existing solutions, the document textline, as an intrinsic granularity in VDU, has seldom been explored so far. A document textline usually contains words that are spatially and semantically correlated, which can be easily obtained from OCR engines. In this paper, we propose Wukong-Reader, trained with new pre-training objectives to leverage the structural knowledge nested in document textlines. We introduce textline-region contrastive learning to achieve fine-grained alignment between the visual regions and texts of document textlines. Furthermore, masked region modeling and textline-grid matching are also designed to enhance the visual and layout representations of textlines. Experiments show that our Wukong-Reader has superior performance on various VDU tasks such as information extraction. The fine-grained alignment over textlines also empowers Wukong-Reader with promising localization ability.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
With the evergrowing sizes of pre-trained models (PTMs), it has been an emerging practice to only provide the inference APIs for users, namely model-as-a-service (MaaS) setting. To adapt PTMs with model parameters frozen, most current approaches focus on the input side, seeking for powerful prompts to stimulate models for correct answers. However, we argue that input-side adaptation could be arduous due to the lack of gradient signals and they usually require thousands of API queries, resulting in high computation and time costs. In light of this, we present Decoder Tuning (DecT), which in contrast optimizes task-specific decoder networks on the output side. Specifically, DecT first extracts prompt-stimulated output scores for initial predictions. On top of that, we train an additional decoder network on the output representations to incorporate posterior data knowledge. By gradient-based optimization, DecT can be trained within several seconds and requires only one PTM query per sample. Empirically, we conduct extensive natural language understanding experiments and show that DecT significantly outperforms state-of-the-art algorithms with a $10^3\times$ speed-up.
translated by 谷歌翻译
The pretraining-finetuning paradigm has demonstrated great success in NLP and 2D image fields because of the high-quality representation ability and transferability of their pretrained models. However, pretraining such a strong model is difficult in the 3D point cloud field since the training data is limited and point cloud collection is expensive. This paper introduces \textbf{E}fficient \textbf{P}oint \textbf{C}loud \textbf{L}earning (EPCL), an effective and efficient point cloud learner for directly training high-quality point cloud models with a frozen CLIP model. Our EPCL connects the 2D and 3D modalities by semantically aligning the 2D features and point cloud features without paired 2D-3D data. Specifically, the input point cloud is divided into a sequence of tokens and directly fed into the frozen CLIP model to learn point cloud representation. Furthermore, we design a task token to narrow the gap between 2D images and 3D point clouds. Comprehensive experiments on 3D detection, semantic segmentation, classification and few-shot learning demonstrate that the 2D CLIP model can be an efficient point cloud backbone and our method achieves state-of-the-art accuracy on both real-world and synthetic downstream tasks. Code will be available.
translated by 谷歌翻译
In this report, we focus on reconstructing clothed humans in the canonical space given multiple views and poses of a human as the input. To achieve this, we utilize the geometric prior of the SMPLX model in the canonical space to learn the implicit representation for geometry reconstruction. Based on the observation that the topology between the posed mesh and the mesh in the canonical space are consistent, we propose to learn latent codes on the posed mesh by leveraging multiple input images and then assign the latent codes to the mesh in the canonical space. Specifically, we first leverage normal and geometry networks to extract the feature vector for each vertex on the SMPLX mesh. Normal maps are adopted for better generalization to unseen images compared to 2D images. Then, features for each vertex on the posed mesh from multiple images are integrated by MLPs. The integrated features acting as the latent code are anchored to the SMPLX mesh in the canonical space. Finally, latent code for each 3D point is extracted and utilized to calculate the SDF. Our work for reconstructing the human shape on canonical pose achieves 3rd performance on WCPA MVP-Human Body Challenge.
translated by 谷歌翻译
Recently, Vehicle-to-Everything(V2X) cooperative perception has attracted increasing attention. Infrastructure sensors play a critical role in this research field, however, how to find the optimal placement of infrastructure sensors is rarely studied. In this paper, we investigate the problem of infrastructure sensor placement and propose a pipeline that can efficiently and effectively find optimal installation positions for infrastructure sensors in a realistic simulated environment. To better simulate and evaluate LiDAR placement, we establish a Realistic LiDAR Simulation library that can simulate the unique characteristics of different popular LiDARs and produce high-fidelity LiDAR point clouds in the CARLA simulator. Through simulating point cloud data in different LiDAR placements, we can evaluate the perception accuracy of these placements using multiple detection models. Then, we analyze the correlation between the point cloud distribution and perception accuracy by calculating the density and uniformity of regions of interest. Experiments show that the placement of infrastructure LiDAR can heavily affect the accuracy of perception. We also analyze the correlation between perception performance in the region of interest and LiDAR point cloud distribution and validate that density and uniformity can be indicators of performance.
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
国家估计是自主系统的重要组成部分。已显示整合超宽带(UWB)技术可以纠正长期估计漂移并绕过环路闭合检测的复杂性。但是,机器人技术中很少有作品采用UWB作为独立的状态估计技术。这项工作的主要目的是仅使用UWB范围测量结果研究平面姿势估计,并研究估计器的统计效率。我们证明了两步方案的出色属性,该方案说,我们可以通过高斯 - 纽顿迭代的一步来完善一致的估计器在渐近上有效。基于此结果,我们设计了GN-uls估计器,并通过模拟和收集的数据集进行评估。GN-uls在我们的静态数据集上达到毫米和次级水平的准确性,并在我们的动态数据集中达到厘米和学位水平的精度,从而提出了仅将UWB用于实时状态估计的可能性。
translated by 谷歌翻译
大规模数据集在面部生成/编辑的最新成功中扮演着必不可少的角色,并显着促进了新兴研究领域的进步。但是,学术界仍然缺乏具有不同面部属性注释的视频数据集,这对于与面部相关视频的研究至关重要。在这项工作中,我们提出了一个带有丰富面部属性注释的大规模,高质量和多样化的视频数据集,名为高质量的名人视频数据集(CelebV-HQ)。 Celebv-HQ至少包含35,666个视频剪辑,分辨率为512x512,涉及15,653个身份。所有剪辑均以83个面部属性手动标记,涵盖外观,动作和情感。我们对年龄,种族,亮度稳定性,运动平滑度,头部姿势多样性和数据质量进行全面分析,以证明CelebV-HQ的多样性和时间连贯性。此外,其多功能性和潜力在两个代表性任务(即无条件的视频生成和视频面部属性编辑)上得到了验证。此外,我们设想了Celebv-HQ的未来潜力,以及它将带来相关研究方向的新机会和挑战。数据,代码和模型公开可用。项目页面:https://celebv-hq.github.io。
translated by 谷歌翻译
腹部器官分割具有许多重要的临床应用,例如器官定量,手术计划和疾病诊断。但是,从CT扫描中手动注释器官是耗时且劳动密集型的。半监督的学习表明,通过从大量未标记的图像和有限的标签样本中学习来减轻这一挑战的潜力。在这项工作中,我们遵循自我训练策略,并使用CNN和Transformer使用混合体系结构(PHTRAN),以生成精确的伪标签。之后,我们将标签数据一起介绍给具有轻量级PHTRAN的两阶段分割框架,以提高模型的性能和概括能力,同时保持效率。 Flare2022验证集的实验表明,我们的方法可实现出色的分割性能以及快速和低资源模型的推断。平均DSC和HSD分别为0.8956和0.9316。在我们的开发环境下,平均推理时间为18.62 s,平均最大GPU存储器为1995.04 MB,GPU内存时间曲线下的面积和CPU利用时间曲线下的平均面积为23196.84和319.67。
translated by 谷歌翻译