With the rapid development of cloud computing, virtual machine scheduling has become one of the most important but challenging issues for the cloud computing community, especially for practical heterogeneous request sequences. By analyzing the impact of request heterogeneity on some popular heuristic schedulers, it can be found that existing scheduling algorithms can not handle the request heterogeneity properly and efficiently. In this paper, a plug-and-play virtual machine scheduling intensifier, called Resource Assigner (ReAssigner), is proposed to enhance the scheduling efficiency of any given scheduler for heterogeneous requests. The key idea of ReAssigner is to pre-assign roles to physical resources and let resources of the same role form a virtual cluster to handle homogeneous requests. ReAssigner can cooperate with arbitrary schedulers by restricting their scheduling space to virtual clusters. With evaluations on the real dataset from Huawei Cloud, the proposed ReAssigner achieves significant scheduling performance improvement compared with some state-of-the-art scheduling methods.
translated by 谷歌翻译
介绍了一种名为VMagent的新型模拟器,以帮助RL研究人员更好地探索新方法,特别是对于虚拟机调度。VMagent由实用虚拟机(VM)调度任务的启发,并提供了一个有效的仿真平台,可以反映云计算的实际情况。从实际云计算结束了三种情况(衰落,恢复和扩展),对应于许多强化学习挑战(高维度和行动空间,高于寿命和终身需求)。VMagent为RL研究人员提供了灵活的配置,以设计考虑不同的问题特征的定制调度环境。从VM调度角度来看,VMagent还有助于探索更好的基于学习的调度解决方案。
translated by 谷歌翻译
近年来,在各种应用程序中,在减轻决策中的不公平或歧视方面,公平感知机器学习的迅速发展。但是,对公平意识的多目标优化的关注要少得多,这确实是在现实生活中通常看到的,例如公平资源分配问题和数据驱动的多目标优化问题。本文旨在从公平的角度阐明和扩大我们对多目标优化的理解。为此,我们首先讨论多目标优化中的用户偏好,然后探索其与机器学习和多目标优化的公平关系。在上述讨论之后,提出了公平意识的多目标优化的代表性案例,进一步阐述了在传统的多目标优化,数据驱动的优化和联合优化中公平性的重要性。最后,解决了公平意识的多目标优化方面的挑战和机遇。我们希望本文在优化的背景下朝着理解公平迈出一步,并促进对公平意识的多目标优化的研究兴趣。
translated by 谷歌翻译
深度监督或称为“中间监督”或“辅助监督”是在神经网络的隐藏层上增加监督。最近,该技术越来越多地应用于深层神经网络学习系统中,以用于各种计算机视觉应用。人们达成共识,即深层监督有助于通过减轻梯度消失的问题来改善神经网络的性能,这是深层监督的众多优势之一。此外,在不同的计算机视觉应用程序中,可以以不同的方式应用深度监督。如何最大程度地利用深度监督来改善不同应用程序中的网络性能。在本文中,我们对理论和应用程序中的深入监督进行了全面的深入审查。我们建议对不同深度监督网络进行新的分类,并讨论计算机视觉应用程序中当前深层监督网络的优势和局限性。
translated by 谷歌翻译
Roadheader是一款在地下工程和采矿行业中广泛使用的工程机器人。 Roadheader的交互式动力学模拟是无人发掘和虚拟现实训练中的一个基本问题。但是,当前的研究仅基于传统的动画技术或商业游戏引擎。很少有研究将计算机图形的实时物理模拟应用于Roadheader机器人领域。本文旨在介绍一个基于物理的式型型式机器人的模拟系统。为此,提出了基于广义坐标的改进的多体模拟方法。首先,我们的仿真方法描述了基于广义坐标的机器人动力学。与最新方法相比,我们的方法更稳定和准确。数值仿真结果表明,在相同数量的迭代中,我们的方法的错误明显少于游戏引擎。其次,我们对动态迭代采用符号欧盟积分器,而不是传统的四阶runge-kutta(RK4)方法。与其他集成剂相比,在长期模拟过程中,我们的方法在能量漂移方面更加稳定。测试结果表明,我们的系统达到了每秒60帧(FPS)的实时交互性能。此外,我们提出了一种模型格式,用于实施该系统的路障机器人建模。我们的Roadheader的交互式模拟系统满足了交互,准确性和稳定性的要求。
translated by 谷歌翻译
联合学习(FL)算法通常在每个圆数(部分参与)大并且服务器的通信带宽有限时对每个轮子(部分参与)进行分数。近期对FL的收敛分析的作品专注于无偏见的客户采样,例如,随机均匀地采样,由于高度的系统异质性和统计异质性而均匀地采样。本文旨在设计一种自适应客户采样算法,可以解决系统和统计异质性,以最小化壁时钟收敛时间。我们获得了具有任意客户端采样概率的流动算法的新的遗传融合。基于界限,我们分析了建立了总学习时间和采样概率之间的关系,这导致了用于训练时间最小化的非凸优化问题。我们设计一种高效的算法来学习收敛绑定中未知参数,并开发低复杂性算法以大致解决非凸面问题。硬件原型和仿真的实验结果表明,与几个基线采样方案相比,我们所提出的采样方案显着降低了收敛时间。值得注意的是,我们的硬件原型的方案比均匀的采样基线花费73%,以达到相同的目标损失。
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
As one of the prevalent methods to achieve automation systems, Imitation Learning (IL) presents a promising performance in a wide range of domains. However, despite the considerable improvement in policy performance, the corresponding research on the explainability of IL models is still limited. Inspired by the recent approaches in explainable artificial intelligence methods, we proposed a model-agnostic explaining framework for IL models called R2RISE. R2RISE aims to explain the overall policy performance with respect to the frames in demonstrations. It iteratively retrains the black-box IL model from the randomized masked demonstrations and uses the conventional evaluation outcome environment returns as the coefficient to build an importance map. We also conducted experiments to investigate three major questions concerning frames' importance equality, the effectiveness of the importance map, and connections between importance maps from different IL models. The result shows that R2RISE successfully distinguishes important frames from the demonstrations.
translated by 谷歌翻译
Text clustering and topic extraction are two important tasks in text mining. Usually, these two tasks are performed separately. For topic extraction to facilitate clustering, we can first project texts into a topic space and then perform a clustering algorithm to obtain clusters. To promote topic extraction by clustering, we can first obtain clusters with a clustering algorithm and then extract cluster-specific topics. However, this naive strategy ignores the fact that text clustering and topic extraction are strongly correlated and follow a chicken-and-egg relationship. Performing them separately fails to make them mutually benefit each other to achieve the best overall performance. In this paper, we propose an unsupervised text clustering and topic extraction framework (ClusTop) which integrates text clustering and topic extraction into a unified framework and can achieve high-quality clustering result and extract topics from each cluster simultaneously. Our framework includes four components: enhanced language model training, dimensionality reduction, clustering and topic extraction, where the enhanced language model can be viewed as a bridge between clustering and topic extraction. On one hand, it provides text embeddings with a strong cluster structure which facilitates effective text clustering; on the other hand, it pays high attention on the topic related words for topic extraction because of its self-attention architecture. Moreover, the training of enhanced language model is unsupervised. Experiments on two datasets demonstrate the effectiveness of our framework and provide benchmarks for different model combinations in this framework.
translated by 谷歌翻译
An increasing number of public datasets have shown a marked clinical impact on assessing anatomical structures. However, each of the datasets is small, partially labeled, and rarely investigates severe tumor subjects. Moreover, current models are limited to segmenting specific organs/tumors, which can not be extended to novel domains and classes. To tackle these limitations, we introduce embedding learned from Contrastive Language-Image Pre-training (CLIP) to segmentation models, dubbed the CLIP-Driven Universal Model. The Universal Model can better segment 25 organs and 6 types of tumors by exploiting the semantic relationship between abdominal structures. The model is developed from an assembly of 14 datasets with 3,410 CT scans and evaluated on 6,162 external CT scans from 3 datasets. We rank first on the public leaderboard of the Medical Segmentation Decathlon (MSD) and achieve the state-of-the-art results on Beyond The Cranial Vault (BTCV). Compared with dataset-specific models, the Universal Model is computationally more efficient (6x faster), generalizes better to CT scans from varying sites, and shows stronger transfer learning performance on novel tasks. The design of CLIP embedding enables the Universal Model to be easily extended to new classes without catastrophically forgetting the previously learned classes.
translated by 谷歌翻译